
Ln Systems
Itt L, O ptimization

00 ,Laboratory

Dynamic Pricing Criteria in Linear Programming

by
Edward S. Klotz

TECHNICAL REPORT SOL 88-15

July 1988

DTICE'ECTE h
QSEPO08 19880

Department of Operations Researchs
Stanford University
Stanford, CA 94305 Fl. dommd lum b

dLvulbcjasa Im %ailmft@d.I &~ T d=, -= .

SYSTEMS OPTIMIZATION LABORATORY
DEPARTMENT OF OPERATIONS RESEARCH

STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305-4022

Dynamic Pricing Criteria in Linear Programming

by
Edward S. Klotz

TECHNICAL REPORT SOL 88-15

July 1988

_CT 5

Research and reproduction of this report were partially supported by the National Science Foun-
dation Grants DMS-8420623, SES-8518662, ECS83-12142; U.S. Department of Energy Grant)E-
FG03-87ER25028, and Office of Naval Research Contract N00014-85-K-0343.

Any opinions, findings, and conclusions or recommendations expressed in this publication are those
of the author(s) and do NOT necessarily reflect the views of the above sponsors.

Reproduction in whole or in part is permitted for any purposes of the United States Government.
This document has been approved for public release and sale; its distribution is unlimited.

8

88 9 6 140

DYNAMIC PRICING CRITERIA IN LINEAR PROGRAMMING

Edward S. Klotz

Department of Operations Research, Stanford University
*r

/

In recent years the interest in,/l1near programming algorithms has increased
greatly due to the discovery of ne interior-point methods. New results have also
prompted researchers to reconsid r some previously discarded ideas in light of their
additional knowledge. This i begins with a study of some variants of the
reduced-gradient method applied to linear programs. Preliminary computational
tests revealed how sparsity and degeneracy, two characteristics present in most
practical problems, can severely inhibit such variants. The development of dynamic
pricing criteria to exclude certain columns from the search direction provides a corn
putationally efficient way to alleviate these difficulties. Application to the simplex
method yields a pivot rule d :signed to avoid degenerate pivots. Generalization of
the rule yields a cheap method to estimate the step lengths associated with potential
incoming nonbasic variables. The result is a set of pivot rules that appear partic-
ularly useful on highly degenerate and poorly scaled linear programs. Extensive
computational tests are presented. iC&€ -

Key words: linear programming, simplex method, reduced-gradient method, pric-
ing, degeneracy.

NTIS ORA&IAccession For

DTIC TAB
Unannounced 14
Justitfication

Distribution/
Availability Codes

Avarl and/or
Dist Special

it_

ACKNOWLEDGEMENTS

It is probably impossible to acknowledge all of the people who somehow influ-
enced the writing of this work, but I shall try to do so. I apologize to anyone I may
have omitted.

Let me begin with those who contributed most directly. First of all, I wish to
thank Professor George Dantzig, my thesis advisor. His experience, knowledge, and
intuition provided uncountable contributions to this work, and he helped make the
educational process an interesting and enjoyable experience. I also appreciate the
availability of his time, a truly scarce resource for such a well-known individual.

I also wish to thank Profeqqors Michael Saunders and CUL tib Evct, the oulder

two members of my reading committee. Their contributions greatly exceeded their
constructive insights on the preliminary drafts. Michael Saunders is one of the cre-
ators of MINOS, a linear and nonlinear optimization code that was vital to many
of the experiments chronicled in this document. Without it, the time required to]
properly implement many of the ideas developed here would have increased greatly.
Curtis Eaves directed many of the seminars that strongly influenced and improved
my understanding of linear programming. Those courses established a solid foun-
dation for the research described herein.

In addition, I wish to thank Professor Richard Cottle, the fourth member of my
orals committee, and Professor Michael Todd of Cornell University, who supplied
some constructive feedback on the first draft of this work.

Professors alone do not create an enjoyable educational experience. The ma-
jority of one's time is spent with fellow students. I wish to thank all of the stu-
dents in the Department of Operations Research at Stanford for helping to create]
a healthy learning environment. I especially appreciate Irv Lustig, Karel Zikan and
Sam Eldersveld for many enlightening conversations about optimization that have
improved this document.

Thus far I have only mentioned individuals I met while at Stanford. Many
others made great contributions by educating me to the level where I could beIjLCI G
from the opportunity to study here. I suspect that all of my teachers made positive
contributions, but two in particular emerge in my mind as having played essential
roles without which I would not have started, let alone finished, this work. I wish
to thank Richard Murphy, who taught me mathematics during my sophomore and
junior years at New Trier East High School in Winnetka, Illinois. The improvement
I experienced under his tutelege was indeed astounding, and I feel very fortunate to
have received such good teaching. Second, I wish to thank Dr. Samuel Goldberg,
who instructed me in four different courses during my undergraduate years at Ober-
lin College, including my first one in operations research. He is a truly outstanding
teacher.

Naturally, I also wish to thank all of the members of my family for their encour-
agement. In particular, however, I thank Irving Klotz, my father. As a professor
of chemistry at Northwestern University, his own experiences enabled him to pro-

vide tremendous support during my stay at Stanford, especially during the difficult
times.

Finally, I wish to thank the following random assortment of people for improv-
ing the quality of life during my time here:

Ed Brown,
Jacqui Lewis,

Dana Perry,
Scott Morris,
Steve Shapiro,
Sam Eldersveld,
Irv Lustig,

Lila Noonkester,
Peanut Harms,
Terence Boynton,
Dirk Rohloff,
the rest of the Thursday Night Brawlers,
the O.R. Jazz Band,
Mr. Green and the Men from Modesto,
Mark Perkins,
Fred Krueger,
Bill Peterson and
anyone else I forgot to mention.

Stanford University,
May, 1988.

-V AM.

TABLE OF CONTENTS

Chapter 1: INTRODUCTION 1

1.1 Notation 2

Chapter 2: FEASIBLE DIRECTION METHODS 4

2.1 Preliminaries 4
2.2 The Choice of Search Direction 4
2.3 The Choice of Promising Variables 7
2.4 Pivoting Strategies 9
2.5 Effects of Degeneracy 11
2.6 Dynamic Pricing14
2.7 A Modified Feasible Direction Method 17
2.8 Computational Results 18

Chapter 3: MULTIPLE-OBJECTIVE PIVOT RULES
IN THE SIMPLEX METHOD 20

3.1 Preliminaries20
3.2 Column Screening in the Simplex Method 20
3.3 Estimating the Step Length 21
3.4 Parametric Variants of the Simplex Method24
3.5 Reduction of the Additional Computation 33

Chapter 4: COMPUTATIONAL RESULTS 37

4.1 Preliminaries 37
4.2 Screening for Degenerate Pivots37
4.3 Screening for Small Step Lengths 38
4.4 Piecewise Linear Estimation of Step Length 39
4.5 Nonlinear Estimation of Step Length39
4.6 Parametric Method 40
4.7 Summary 41

Chapter 5: EXTENSIONS AND FUTURE RESEARCH 71

5.1 Feasible Direction Methods 71
5.2 Dynamic Pricing72
5.3 Parametric Algorithms73

Chapter 6: SUMMARY AND CONCLUSIONS 74

% z Z0

Chapter 7: APPENDIX. 75

7.1 A Procedure to Find an Optimal Vertex From an Optimal Solution . 75
7.2 Extensions to Bounded Variables 76

References 81

CHAPTER 1: INTRODUCTION

After more than 40 years, Dantzig's simplex algorithm remains the most pop-
ular method for solving linear programs. Since its invention in 1947, researchers
have proposed many other algorithms, yet none of these has consistently outper-
formed the simplex algorithm. In addition, many different pivot rules (see [2], [17],
[18], [19], [43], [52] and [53]) have arisen for the method, yet most implementations
continue to use Dantzig's original pivot rule.

In 1984 Karmarkar [23] proposed a projective algorithm for linear programming
substantially different from the simplex method. Karmarkar's algorithm moves
through the interior of the feasible region, while the simplex method traverses a
sequence of feasible vertices. While it remains unclear if this new algorithm will
ultimately replace the simplex method for solving practical problems (refer to [1]
and [26]), the approach has profoundly influenced the direction of research in lin-
ear programming. Other algorithms have arisen (see [4], [42], [49] and [54]) that
are strongly motivated by the projective method. In addition, it has prompted
researchers to reexamine previously discarded ideas in light of their new knowl-
edge (see [15]). The research described in this thesis began by adopting the latter
approach, experimenting with variants of the reduced-gradient method applied to
linear programming. Although these experiments did not yield an algorithm supe-
rior to Dantzig's method, they provided insight into the major drawbacks of these
variants. The experiments also inspired a set of dynamic pricing criteria that shows
great promise to improve the simplex method.

Chapters 2, 3 and 4 comprise the majority of the thesis. Chapter 2 discusses
a set of feasible direction methods for linear programming similar to the reduced-
gradient method. After a brief description, we examine how degeneracy can inhibit
the progress of such algorithms. This obstacle motivates the development of pricing
criteria to avoid degeneracy. The idea also generalizes to deal with "near" degener-
acy. The result is a modified feasible direction method. We present computational
results for the method on some practical problems. The algorithm usually out-
performed the simplex method with respect to iterations, but it always required
more time. Nonetheless, the results reveal an improvement over previous tests of
similar methods. Pricing criteria to avoid degeneracy provide the main source of
improvement.

Chapter 3 considers the use of such pricing criteria in the context of the simplex
method. We first apply the results of Chapter 2. We then develop additional
criteria designed specifically to improve the simplex method. The result is a set
of very promising multiple-priority pivot rules. One can view such procedures as
computationally inexpensive attempts to estimate the step length associated with
a potential basic variable. Although fairly cheap, these techniques do increase the
computational effort. We therefore develop results designed to reduce the extra
work. In addition, we study a parametric simplex method due to Gass and Saaty
that Dantzig recommends in [71 to avoid cycling. Although this approach usually

performs well on highly degenerate problems, it does so without making any effort
to avoid degenerate pivots. This leads to a pivoting procedure that combines the
parametric method's selection rule with a multiple-priority pivot rule designed to
avoid degenerate pivots. The chapter concludes with some results designed to reduce
the computational burden associated with the previously described rules.

Chapter 4 presents extensive computational tests of the pivot rules described.
Each rule requires fewer iterations than the simplex method on most problems.
However, the reduction in iterations does not always result in a reduction in com-
putation time. Nonetheless, the rules typically perform quite well on the larger,
more difficult problems.

Chapter 5 contains a discussion of some untested ideas that may be fruitful
areas for future research. Extensions of the ideas developed here, along with appli-
cations to nonlinear programming, are considered.

Chapter 6 summarizes the thesis and provides some conclusions. The author
hopes that the reader will have acquired some additional tools in his arsenal for
solving linear programs, as well as some new insight on some previously established
results.

An appendix follows the thesis. It describes details pertinent to the computa-
tional experiments; for example, the ideas described in Chapters 2 and 3 had to be
generalized to deal with bounded variables. The appendix contains no new math-
ematics, but it highlights significant differences between the theory and practice of

linear programming.

1.1. Notation

This thesis deals primarily with linear programming. We begin by establishing
s om pertinent preliairinarieq .nd Potntion. The author assumes that the reader is
familiar with standard linear programming theory; if not, refer to [6] or [35]. For
details on the computational aspects of linear programming, see [14], [16], [31] and
[46]. We consider the following standard form linear programming problem:

minimize crx

subject to Ax = b (1.1)

x > 0,

where A E R ", c E R' , x E R " , and b E R'. Without loss of generality, assume
that rn < n and A has full rank.

The dual of (1.1) is:

maximize bir

subject to A'r + v = c (1.2)

v>0.

We will often wish to consider submatrices of A. Consider I = {i 1 , i I C
{1,.. .,}rn and J ={j,....i,} C {1,...,n}. Then

A,

2

: / 2 ' 2' '.' ,. .' .V........................-.................-..-....... -.,- ,'.' '-. -.' ' ' .,.'- '-,.."' "." '.--

represents the submatrix of A consisting of rows indexed by {..,... i } and all
columns. Similarly,

A.,

represents the submatrix of A consisting of columns indexed by {j.,... J, } and all
rows. Also,

Al,j

consists of the submatrix of A with rows indexed by I and columns indexed by J.
This notation simplifies slightly for vectors; c., denotes the components of c indexed
by J.

Let B be an m x m nonsingular submatrix of A. B is called a basis. Such a B
exists because A has full rank. When appropriate, we shall also use B = 'ji,... 11m)

to index the corresponding columns of A; thus B and A.B represent the same matrix.
Similarly, let N index the set of nonbasic columns of A. Given a basis B, the linear
program (1.1) has the following equivalent canonical form:

minimize er~xN

subject to xn +!.NXZ=b (1.3)

XBI XN > 0

where =-B A B-Bb, and Z= -= _rTA. . The m-vector 7r comprises the
basic dual variables and is defined by the linear system

7.TB = C T

The linear programs (1.1) and (1.3) provide the framework for the ideas developed
hereii. Additional notation shall be defined as the need arises.

3 J

CHAPTER 2: FEASIBLE DIRECTION METHODS

2.1. Preliminaries
Wolfe proposed the reduced-gradient method (see [50]) for linearly constrained

optimization in 1962. While primarily intended for nonlinear objective functions,
the algorithm can also solve linear programs. Since its invention, several authors
(see [5], [81, [9], [10], [12], [21], [221, [361, [371, [40] and [451) have described similar
algorithms for linear programs. One can view these approaches as extensions of
the simplex method since they utilize the notions of basic and nonbasic variables
yet allow for feasible iterates other than vertices. Computational results in the
literature usually deal only with random problems; one exception consists of tests
performed by Kaliio and Orchard-Hays [22]. The purpose of this chapter is to
broaden our understanding of such algorithms. We begin with a general description
of the approach, provided in Sections 2.2-2.4. Section 2.5 discusses the effects of
degeneracy on such algorithms, while Section 2.6 develops techniques to deal with
this problem. Section 2.7 then proposes a modified feasible direction method based
on the results of Sections 2.2-2.6. Computational results on a set of practical test
problems are presented in Section 2.8.

2.2. The Choice of Search Direction

Consider the linear programs (1.1) and (1.3). Assume a feasible solution x and
a basis B. Unlike in the simplex method, x here need not be a vertex, and B need
not be a feasible basis. We wish to choose a search direction q E R" such that
Aq = 0 and crq < 0. Choose a set P C N of promising variables to change. For
j E P, set 6i as the rate of change of xi; let i = 0 for j V P. We will elaborate on
how to determine 6, and P later. Now, define the following search direction q:

qp = bp
qN\P = 0 (2.1)

qB = -A'.,qp.

Note that Aq = Bq. + A.pq, + A.N\PqN\P = 0. For any suboptimal x we will see in
Section 2.3 that there always exists a set P and rate of change b,. such that crq < 0.
Therefore, q provides a descent direction. Observe that if B is a feasible basis and
x is the associated vertex, then one can view the simplex method as a special case
by choosing a single promising variable with negative reduced cost Zi and setting
6, = 1.

Given q, we wish to move to a new solution

Y= x + q (2.2)

for any nonnegative scalar 0. Since q lies in the null space of A, it follows that
AY = b, so we wish to choose 0 to maximize the improvement in the objective
function while ensuring that 7 > 0. Observe from (2.1) and (2.2) that

= (79,r, YN\p) = (x, - OTpqp,xp + Oq, xN\p). (2.3)

4
L °.

Since "N\P = XN\P -- 0, only variables in P and B may violate their nunnegativity U
requirements. First, consider the variables in P. For j E P,

xi + 9qj :> 0 4* Oqi > -xi
4*> 0 < -x..-i for j: qj < 0

qj

8 < min -xj (2.4)
j:q,<o q-

The same logic applies to the basic variables. For j E B,

xj + Oq1 > 0 4 O < min . (2.5) U
j:qi <0 qj ,

In order for Y to remain nonnegative, 9 must satisfy (2.4) and (2.5) simultaneously.
In other words,

0= min -Xj (2.6)
jEBUP:qi<o qj

Recall that in the simplex method only a single nonbasic variable increases, so (2.4)
is always true, and (2.6) simplifies to the usual ratio test on the basic variables.
(2.6) guarantees that Y = x + Oq > 0. Since AT = b, Y is a feasible solution for the
linear programs (1.1) and (1.3). We now have defined a procedure to determine a
search direction q and an associated step length 0.

The algorithm is incomplete since the rules governing changes in the basis and
determination of promising variables and their rates of change remain undefined.
Sections 2.3 and 2.4 examine those aspects in detail. Meanwhile, we extend the,,
search procedure to allow for a second search direction 4. The algorithm will then '
use a linear combination of q and 4 to compute the next feasible iterate. We define .,

by viewing the constraints of the linear program (1.3) in the following equivalent A
form: ,,-<,

APXP Tp_-Aq.N\Pxlv\p]

XN\P, xP _ 0. (2.7)

(2.7) considers the algorithm from the perspective of the space of the promising
variables xp. The basic variables x. serve as slack variables. Observe that in this
space, movement from x to Y implies movement in search direction q until at least
one of the hyperplanes defining the constraints is reached. In other words, once
we determine a search direction q, suppose that we move from the current feasible
solution x in the direction q as far as possible. The step length 9 increases until a
slack variable attains zero; (2.6) determines the size of the step length and identifies
one or more such variables. A hyperplane corresponds to each slack driven to zero,
and we shall utilize such a hyperplane to determine a second search direction. In
order to identify a tight constraint, consider the ratio tests in (2.6). Let j* index a
variable achieving the minimum ratio, i.e.

= argmin --

jEBUP:q, <0 qj

Two cases arise. If j* E P, then 7,- = 0. Let rp index the component of P
containing j* ; P(rp) j*. Also, let CT E RIP' represent the rpth unit row

5p

"J

vector. In this case a tight hyperplane corresponds to the nonnegativity constraint
eTxp _> 0 (or, equivalently, x i . _> 0) found in (2.7). The second case occurs when

j* E B. In this case suppose the r.la component of B contains j*. Then a tighthyperplane corresponds to the constraint A , z < b,. -A.N\PXN\P- Summarizing

the two cases, let Up represent the normal to a tight hyperplane determined b3 the
ratio tests in (2.6). Then,

erp if E* P; t
{= A (2.8)

Ar ,p ifj* B.

Given U., project qp, the promising components of the first search direction, onto
the hyperplane a'pxp = 0 in order to generate a second direction 4p. Recall that
projection onto the null space of e- is equivalent to projection onto the orthogonal
complement of the row space of a,-. Projecting onto the row space of Up involves
the projection matrix

Projection onto the orthogonal complement of the row space of a involves the
projection matrix

Hence, I

4, = (P ,-

= qp (Z!aq,))p. (2.9)

Notice that if j* E P, Up is a unit vector, and the computation of , requires
very little extra work:

4p = qp - erpq,..

However, if j* E B, then

((eraB'A.pqp)
e qP B T (e,-B-'Ap) T .

4 =T _(e'B-1A'p P) 112 " er

In this case one must solve the linear system wTB = eTB and then compute inner
products between w and A.j for each j E P. These computations require significant
extra work.

Given 4p, we ensure that 4 lies in the null space of A by setting

4\P = 0 and

4B = -A,,,,. (2.10)

6

Given a feasible solution x, we move to a new solution

= (XB - OA.pqp - lA.qp,X + qp + ALp,XN\P). (2.11)

Since 4 lies in the null space of A, A-; = b for all values of 0 and M. We wish
to choose 0 and t so that i satisfies the nonnegativity requirement while bringing
about the largest possible change in the objective function. With a single search
direction this occurs when 0 is chosen as large as possible subject to the constraints
specified by the ratio tests in (2.4) and (2.5); one can view this as a one-column
linear program with solution given by (2.6). Finding the best combination of two
search directions requires the solution of a two-column linear program:

minimize (eqp)O + (Zq'p,)y

subject to (-q,)O + (-4,)p < Xp (2.12)

(Tpqp)9 + (Tpp)y < xB.

Remember that x is a feasible solution, so 6 and ft are the only variables involved
in (2.12). The objective function in this linear program measures the change in
the objective of the linear program (1.1) achieved by moving from x to i. The
first set of constraints correspond to the nonnegativity requirements on p implied
by (2.11), while the second set corresponds to the analogous requirement for i..
Therefore, i is feasible for the linear programs (1.1) and (1.3).

We have just described a procedure that defines a two-dimensional search plane
instead of the usual one-dimensional search line. The use of a search plane requires
significant additional computation, but it offers an extra dimension that can help
the algorithm avoid getting stuck in a long sequence of iterations with minimal
progress. One can solve two-variable linear programs quickly. One could implement
a specialized simplex method that exploits the fact that the constraint matrix of the
linear program (2.12) consists of two columns plus an identity matrix. Therefore,
during any iteration, a basis contains at most two columns other than unit vectors,
which should reduce the work involved in basis factorizations and updates. A second
approach consists of using a special linear-time algorithm for two-variable linear
programming (see [30]). The latter method was adopted here.

2.3. The Choice of Promising Variables

Section 2.2 described how to change a feasible solution x to a new feasible
solution Y (or i, if one uses two search directions). This section investigates the
determination of P, the index set of promising variables. We wish to choose P so
that a decrease in the objective function will always result from the change in x.
In the literature the most frequently encountered selection rule consists of selecting
each nonbasic variable that would individually decrease the objective function. In
other words,

jEPif 1j<0, xiOor

Zj > 0, X3 > 0. (2.13)

We then set qj= -Z, for j = P. (2.1) now precisely specifies the search direction
q. Note that because x need not be a vertex, the objective function will improve by
decreasing a positive nonbasic variable with positive reduced cost; such variables

7

do not exist in the simplex method. In Section 2.7 we will modify (2.13), but the
change will not affect any of the ideas discussed in the remainder of this section.

Notice that the simplex method's one-to-one correspondence between bases
and feasible solutions no longer exists. In fact, one can associate a feasible so-
lution x with any basis, even an infeasible one. Since the values of the reduced
costs depend on the choice of basis, so does the determination of P. Given x, a
particular nonbasic variable could increase for one associated basis yet decrease for
another. Nonetheless, the following lemma shows that q remains a descent direction
regardless of the choice of basis.

Lemma 1. Given a feasible solution x and any basis B for the linear program
(1.1), suppose one defines q as follows:

qp =-p

qN p= 0 (2.14)

q= -A.pqp = "A.~p.

Then cTq < 0.

Proof. We prove the lemma by partitioning CT and q by B, P, and N \ P:

T CTq T ± Cq = + cpqp CN\pqN\P
= i7- + 0

- cB-lA.p' p - Crep
C T

(BrA.T p - cr) p

- -ll ,1ll < o. •

Lemma 1 implies that a feasible descent direction always exists if the current
solution is not optimal. Note that although the resulting second direction 4 need not
guarantee descent, the optimal solution (0", IA*) to the two-column linear program
(2.12) yields the descent direction 0 *q + 1A*4 used to determine i in (2.11). This is
true because one can set p = 0 in (2.12) and use only q as a search direction.

The loosening of the relationship between bases and feasible solutions discussed
here raises a similar ambiguity with respect to optimality of a solution. One would
hope that if the set P is empty during a particular iteration, then the current
feasible solution is in fact optimal. Lemma 2 reveals this to be true regardless of
the associated basis.

Lemma 2. Given a feasible solution x and a basis B for the linear program (1.1),
if P is empty, then x is optimal.

Proof. We prove the lemma by utilizing the complementary slackness conditions,
which are necessary and sufficient for optimality. First, note that for j E B, Fj = 0
and xj > 0. Furthermore, since P is empty, its definition (2.13) implies that for
j EN, xi = 0 if Fj > 0, and F = 0 if xj > 0. We conclude that the primal feasible
solution x and the dual feasible solution (7r, F) satisfy the complementary slackness
conditions. *

Lemma 2 provides a simple termination criterion for the algorithm. Notice
that, unlike the simplex method, the resulting optimal solution need not be a vertex.

8

When solving practical linear programs, the modeller frequently wishes to perform
sensitivity analysis. In order to do so, the optimal basis must correspond directly
with the optimal solution. Unlike the simplex method, the algorithm described
here does not guarantee this correspondence. Fortunately, one can design a simpleprocedure to move from an optimal solution to an optimal vertex. For details refer

to the appendix.

2.4. Pivoting Strategies

After defining the set of promising variables and moving to a new feasible solu-
tion, all that remains undefined in an iteration is a pivoting procedure to change the
basis. For expository purposes assume the algorithm uses a single search direction
q; the procedure is very similar for two search directions. Many different pivoting
strategies are available. For the computational tests in Section 2.8, the pivot rule
depends on the value of the step length 0 defined by (2.6).

Case 1: Suppose that 0 > 0. Given the precise definition of q in (2.14), we
specify the ratio test in (2.6):

0= mmn -- =min mn " mn(.5j:qj <0 qi IjEp:rj>o 7j :Ai.,,..<O I~e

Recall that Ir is the current feasible solution resulting from the iterative step (2.2).-0
Let s index the entering basic variable; choose the largest promising variable to
enter the basis:

s = argmaxY Y. (2.16)
jEP

Other criteria were also tested, but (2.16) emerged from the experiments as the best
one.

Selection of the outgoing variable depends on the sign of the reduced cost F,.
If F, < 0, we wish to increase the incoming variable. However, if the ratio test in
S2.15) results in a basic variable reaching zero, we also wish to remove that variable
rom the basis. The following procedure always achieves at least one of these goals.

As in Section 2.2, let rB be a component of B containing a basic variable driven
to zero by the basic variable ratio test in (2.15); jr. indexes the corresponding
variable. Define X., = B- 1 A.. as the representation of the incoming column with

respect to the current basis. If A!r,, > 0, then select jr. as the outgoing basic
variable and change the basis. Otherwise, select the outgoing variable by the usual
simplex method ratio test:

r = argin J,. (2.17)

Choose the r 1 1 basic variable j,. to leave the basis. Associated with r is 0, the
increase in the entering variable:

0= min x.-- (2.18)

Note that if A,, : 0, the algorithm terminates with an unbounded solution. If not,
update the current feasible solution:

F 4--7. +

9

I

Note that the updated solution remains feasible. Now, replace the rh column of
the basis with A... At this point a few observations are in order. First of all, note
that if r. exists and :rB,. > 0, then r, is an argmin of the standard ratio test
(2.17), and the corresponding increase 9 is zero. Note also that if no basic variable
hits zero in the ratio test (2.15), then no such index rB exists; proceed immediately
with the ratio test (2.17). This completes the pivot rule when F. < 0.

If F. > 0, we wish to decrease the incoming variable as much as possible
without violating its nonnegativity requirement. One must also ensure that the
basic variables remain nonnegative. In this case, if rg exists and ArB,, < 0, then
the r' h basic variable leaves the basis; do not perform a ratio test. Otherwise,
perform the following ratio test to preserve nonnegativity of the basic variables:

r = argmin_- LL. (2.19)
i:A",, <0 Aj,,

The difference between (2.17) and (2.19) occurs because the entering variable de-
creases when Z, < 0. In addition, define

mi , (2.20)i:A,., <o Ai,°

is the largest possible decrease in the entering variable that preserves nonnegativity
of the basic variables. Remember that one must also guarantee that the decrease
in the entering variable does not violate its nonnegativity constraint. Observe that
this implies that the algorithm never terminates with an unbounded solution when
Z! < 0. If 9 > Mr., the entering variable reaches zero without driving any of the basic
variables below zero. In this case avoid the pivot and merely update the present
solution:

4 +-- Tr + ;.-1.

If 9 < T', then a pivot is necessary. Update " as follows:

T4--

.- T, + 1.9.

Replace A.j, with A.. as the r' h basic column. This completes the pivoting proce-
dure when E, > 0.

Case 2: Suppose that 0, the step length in (2.15), is zero. Observe that
promising variables with negative reduced costs cannot directly bound 8. Since
Xj >0 if3 E P and Ej > 0, one sees that among the promising variables the
minimum ratio in (2.15) must be positive. It follows that 0 = 0 only if at least one
basic variable jr is zero and the corresponding component in the search direction
q A,, < 0. Experimentation with a set of 12 practical problems suggested
te benefit of removing such variables from the basis. Accordingly, a procedure to
ensure removal was adopted. Define

S {Ee: Fj<O0, rj >O0 or '

Zj > 0, Ar, < 01.

10

IRS

Since A,, < 0, we know that 3 j E P : E < 0 and Aj,, > 0, or Ui > 0 and
Ar,, < 0. Hence, ISI 1. In other words, there exists at least one promising
variable whose entrance into the basis will remove the rh basic variable. S indexes -
all such variables. We now select the largest nonbasic variable in S to enter the
basis:

= argmax r..
jES

One can improve the stability of the algorithm by modifying the rule to ensure a suf-
ficiently large pivot element. Murtagh and Saunders [32] recommend the following
modification. Define

a = max IAr,,

and choose
s = argmax({' : -A,> 0.la}. S

'ES

Observe that if U, < 0, then X,, > 0 since s E S; hence we see from the standard
ratio test (2.17) that the rth basic variable is eligible to leave the basis. Similarly,
the ratio test (2.19) assures eligibility if E. > 0. In each case 9, the change in the
incoming variable, is zero, so no change in the current feasible solution occurs. The-0
pivoting procedure when 0 = 0 is now complete.

We have now accounted for all possible values of 0. The pivot rule is complete.
We can now update the basis and proceed with the next iteration.

2.5. Effects of Degeneracy 0

The previous three sections provided a general description of a type of feasi-
ble direction method for linear programming. Some flexibility exists with respect
to selection of promising variables, pivoting procedure, and other details, but the
fundamental approach remains unchanged.

Very little computational testing of this type of algorithm exists in the liter- MA-

ature. Nonetheless, several publications remain noteworthy. In 1979 Cooper and
Kennington [5] discussed linear programming algorithms:

We find it curious that the literature contains so few papers concerning
other algorithms for such an important class of problems. We assume ei-
ther (i) other ideas have been investigated, abandoned, and never reported,
or (ii) the simplex method has proved so effective that other investigators
felt no motivation to work in this area.

They went on to propose algorithms within the class described here. No compu-
tational t, ting was performed. Sherali, Soyster, and Baines [45] tested a similar
algorithm on a set of random problems. They remarked:

Computationally, this method turned out to be substantially inferior
to the simplex method ... One may expect in this instance that after some
rapid initial improvements, the reduced gradient procedure goes through
many more insignificant iterations. This was not the case ... What appears
to happen is that instead of jumping along the simplex path, and hence
rendering itself advantageous, the procedure zigzags across the simplex
path, resulting in several more iterations.

11

.

Eiselt and Sandblom [81 also report discouraging results for a similar approach:

The intended "shooting through polytopes" in our study resulted in
many problems, most prominently numerical instability and convergence
problems. On that basis, the method was referred to as "crawling and
stalling" and work on it was discontinued.

Eiselt and Sandblom altered their approach to allow for the notion of external
pivoting. With this modification they reported encouraging computational results
on a set of random problems. Meanwhile, Kallio and Orchard-Hays [22] tested a
reduced-gradient method on a set of non-trivial practical problems. They restricted
the set of promising variables to at most seven, regardless of problem size. They
also utilized a multiple pricing procedure in an attempt to reduce the average work
per iteration. Nonetheless, they too found their approach required more iterations
than the simplex method on most of their test problems.

The initial tactic adopted here was to utilize the two-dimensional search method
described in Section 2.2. It was hoped that this method would alleviate the difficul-
ties described by these authors. However, the flexibility provided by an additional
direction proved insufficient to make the approach competitive with the simplex
method. Iteration counts ranged from 1.3 to 2.1 times those of the simplex method
on the 12 practical problems tested. CPU times were not even considered since each
iteration requires significant extra work compared to a simplex iteration.

The reader may find these results surprising; intuitively one might anticipate
that moving through the feasible region instead of around it would provide a sub-
stantial advantage over the simplex method. However, detailed examination of these
algorithms reveals an explanation for the poor performance on practical problems.

Sparsity and degeneracy are two characteristics of practical problems that are
absent from most randomly generated problems. Although one can generate sparse,
random problems, they still lack the sparsity patterns characteristic of real prob-
lems. Sparsity and degeneracy inhibit the performance of the algorithms of Sections
2.2-2.4. In particular, values of zero in the ratio test that determines the step length
occur much more frequently than in the simplex method. To see why, recall the
ratio tests involved to determine the step lengths. If we use a single search direction,
define P by (2.13), and set q, = -Li for j E P, then the step length 0 is bounded
above (see (2.6) and (2.15)) by the following minimum ratio:

0< min Xm (2.21)
--

On the other hand, a slightly different ratio test bounds the step length in the
simplex method:

0 < mmin (2.22)
-:A',. >o A,

Note that the simplex method uses a single column A., in the ratio test, while
the feasible direction method uses a linear combination of many such individual
columns. Why is this difference significant? On problems tested here the canonical
columns A • typically remained sparse, albeit not to the extent of the corresponding
original columns A.j. Taking a linear combination of many such sparse columns as
in the ratio test (2.21) increases the density of the composite column A.()

This occurs regardless of the choice of search direction if JP is substantial. The
result, as illustrated by Figure 2-1, is that the dense composite column contains

12

Figure 2-1. Degeneracy and Linear Programming Algorithms

Simplex Method Feasible Direction Method

0 + +
o + + +

- 0 -0

0 0 + 0
0 o 0 0o + - +
0 + + +
+ + + +

0 + - +
0 0 + 0
o + 0 +

(9>0) (9=0)

many positive components, eAch of which is eligible in the ratio test. Contrast this
with the simplex method, where usually only a few positive components exist.

Given the presence of degeneracy in the basic variables, one sees that the
minimum ratio of (2.21) equals zero with greater likelihood than that of (2.22).
This also explains why the simplex method can frequently solve degenerate linear
programs without performing too many degenerate pivots; the degenerate basic
variables frequently correspond to non-positive components of the column in the
ratio test. The same cannot be said for the algorithms in Sections 2.2-2.4.

This kind of difficulty need not arise only in the presence of degeneracy. As
long as the nonbasic columns A.j remain sparse, feasible direction methods will
frequently be restricted by the step length associated with the worst promising
column. To see this, consider the following small numerical example:

1 0 0 1
2 -1 0 2

-2 1 0 1
.1 = 0 .2 = - 1 .= 0 x,= 4

0 0 0 2
0 0 1)
0 0 8 8

1
7(1,31= (-,-I,-). (2.23)

In this example P = {1,2,3}, and 0 < E < 1. In the simplex method the step
lengths associated with entering columns 1,2, and 3 into the basis are 1,1, and E,
respectively. The corresponding improvements in objective function are 1,1, and
.. Since e may be arbitrarily small, we see that columns 1 and 2 are good choices,

13

while column 3 is a poor one. Fortunately, the standard simplex method would
choose 1 or 2 to enter the basis in this situation. Given the choice of P, we see that

fI

1

~= -1
0

4

From the ratio test (2.21) it follows that the corresponding step length cannot exceed
2e. Similarly, since tpqp U = - 1, the resulting improvement in the objective
function is at most le. Thus, for e < 1, the feasible directfon algorithm yields a
smaller improvement than the simplex method. Note, however, that if P = {1, 2},
then

1
-1

0

0

The resulting step length is now I and the improvement in the objective function is 2,
so the feasible direction approach outperforms the simplex method. The important
observation here is that A. 3 is complementary to A1.1 and A. 2 . Therefore, A. 3

limits the feasible direction step length regardless of the benefit of other promising
columns. Because of sparsity, this situation occurs frequently in practical problems,
and it creates a significant obstacle for any of the algorithms previously described
herein. Of course, the simplex method, which is a feasible direction method that
selects enly one promising variable, may also choose poorly. However, the point
here is that it takes only one bad column to inhibit the step length; an algorithm
selects such a column more frequently when it chooses many promising variables
instead of one.

How can we overcome these difficulties? Observe that in the numerical example
the feasible direction method progresses nicely when we exclude column 3 from the
set of promising variables. This suggests the benefit of screening out certain bad
columns as unpromising, even though they satisfy the previous promising criterion
(2.13). In the next section we shall develop some computationally inexpensive
techniques to do so.

2.6. Dynamic Pricing

Section 2.5 demonstrated how a single column with a small step length can
inhibit progress of the al~orithms of Sections 2.2-2.4. We now develop methods to
screen out such columns in a computationally inexpensive way.

Let us begin by considering columns with zero step lengths. Define

S min E N. (2.24)
i:A, > Aij

14

O is the step length that would result from increasing the jth variable. For ex-
pository purposes we shall consider the case of promising variables with negative
reduced costs; similar logic applies for those with positive reduced costs. For a
variable with a zero step length, Oi = 0, so from (2.24) one sees that at least one
basic variable equals zero and corresponds to a positive component of Aj in the
ratio test. How can one detect such columns in advance? For each j E P, one could
explicitly determine 9j and exclude any columns for which 9j = 0. Unfortunately,
this would require the representation X., of the columns A., in terms of the cur-
rent basis. In other words, one must solve IPI systems of linear equations of the 0
form By = A.,, a prohibitively expensive task. A much cheaper approach consists
of defining a second objective function that measures the degeneracy of the basic .

variables in a way that yields valuable information on how to exclude bad columns.
Since the basic variables change during iterations when the objective improves, this
second objective function changes during the course of the algorithm. In particular,
at the start of a given iteration, define d E R' so that d. = 0 for j E N, and

d Ii if Xii=0, (.5
d ,,={0 otherwise (2.25)

for i = 1,... ,m. Thus, d identifies the degenerate basic variables. For j E F
compute the quantity d = dc.. The following lemma provides a simple column
screening criterion.

Lemma 3. f 3j > 0, then 9j = 0.

Proof. A closer look at 3j proves the lemma. Observe from the definition of d.
in (2.25) that S

i:xjj =0

In other words, 3i consists of the sum of components of .j that correspond to a
degenerate basic variable in the ratio test in (2.24), Therefore, if 3i > 0,

3 i* Ai,,j > 0, x0. = 0.

Note that i" is eligible for the ratio test (2.24), so

0< 9 j,. =0, 0- -Ai-j

which establishes the desired result. e
Thus, if di > 0, one knows in advance that x i results in a zero step length if

it becomes basic. Furthermore, we shall see how to compute 3i efficiently. We now
have a method to exclude columns from P. Note that 3i < 0 does not necessarily
imply that 0j > 0; consider

.j = -2 , x.,= 1 .
1o

,V~~*,I*,N N N' . ?

U ~ ~ IZWILWJI M WUW WWVXVXi7~

We now show that the computation of dj requires essentially the same amount
of work as computing the reduced costs Fj. One does not compute dj from the
expression d A.1 j; this would involve solving for each A, j E P. Instead, observe
that

di = ,A. = (djB-')A.i.

Let a' = d.B - '. Generate a by solving the linear system

arT B = dB. (2.26)

Solving for a is analogous to solving for ir, the dual variables. Now, compute
dj = rTA.j. Computing di for all j E P requires only one additional solve, as
opposed to the JP additional solves needed to examine individual components of
each A.. More generally, one can generate any linear combination of the rows of the
matrix 1, with one additional solve, but examination of individual components of
each column of that matrix requires JP extra solves. The key, of course, consists
of choosing a linear combination that yields valuable information, as in (2.25).

Let us now extend this notion to deal with small values of 0. In (2.25) an
indicator function I{zfi=0} determined the value of dj,. In general one can set

dj, = f(x,) i = 1,...,m (2.27)

for any specified function f. Lemma 4 proposes some beneficial choices of f.

Lemma 4. Given r > 0, suppose that di = f(x,) where

f (Xi,) > 0 if Xj, < r,

f(xj,) = 0 if xj _ r. (2.28)

Then
main "Aj

i:A'i >0

Proof. Lemma 3 is a special case of Lemma 4, so we utilize a similar strategy to
prove the result. Given the definition of f,

=j;i4fxj > 0O* i* : -,.,j > 0 and xj.< 7.
i:zii Cr

The basic variable indexed by i* is eligible for the ratio test in (2.24), so

0!j< LC< < _
Aij -- mn Ai min Ai

i:Aij >0 i:Ai j >0

Lemma 4 provides a way to screen out columns with small step lengths. Again,
the procedure requires only one additional solve. The particular choices of f and 7
are important. One can specify a piecewise linear function to satisfy the condition

16

Z6. ~ p

(2.28) of Lemma 4. For example, define Y -= =1 xj, as the average of the basic
variables, and let a represent a positive scalar. Set

d1~f~ 13 [-2~ (2.29)

Consider the plot of dj, against xji.

d j

xj i

As in (2.25), we again set dis = 1 if x*, = 0, but we now utilize the values of Y
and a to account for relatively small basic variables.

For an illustration, set a = 1 and reconsider example (2.23) with E = .1. One
sees that d3 > 0, resultin5 in the exclusion of column 3 from P. The feasible
direction method then achieves a greater improvement in the objective function
than the simplex method. One can also construct examples of good columns failing
the screening test and bad columns passing it. Nonetheless, this choice of f has
proven useful in practice.

We now have developed an inexpensive way to evaluate further the promise of
potential entering variables. In the next section we shall use these ideas to propose
a modified feasible direction algorithm. Later we will extend these ideas and apply
thew, to the simplex method.

2.7. A Modified Feasible Direction Method

The results of Sections 2.5 and 2.6 suggest a slightly different feasible direction
method. In particular, in light of Lemmas 3 and 4, define P* C P as follows:

jEP*if Z,<0, xi,0, d <0or
?!j > 0, Xi > 0, 3i > 0. (230)

In other words, a variable remains promising only if it passes one of the screening
criteria of Section 2.6. Notice that for positive variables in P, negative values of

17

Figure 2-2. A Modified Feasible Direction Method
Given: a basis B and a feasible solution x for the linear program (1.1).

i. Determine the sets P and P* by (2.13) and (2.30).
2. If P =,go to 10.
3. If P* i 0, set P = P.
4. Determine the search direction q: qp = -p, qN\p = 0, q =A ..
5. Determine the step length 0:

0= min -.
jEBUP:q <0 q0

6. Move to a new feasible solution 7 = x + Oq.
7. Determine the incoming and outgoing basic variables by the rules of Section

2.4. If the procedure reveals an unbounded solution, go to 11.
8. Update the basis.
9. Go to 1.

10. The current solution is optimal.
11. Terminate the algorithm.

dj identify excluded columns. Recall that when a variable decreases, the negative
components of Aj become eligible for the ratio test (2.20). This change in sign
explains the different interpretation of d, when a variable decreases.

We now substitute P* for P in the previously described algorithms. The results
remain unchanged except for the termination criterion. Emptiness of P* need not
imply optimality of the current solution. Emptiness of P remains as the stopping
rule. Figure 2-2 summarizes the modified algorithm using a single search direc-
tion. The changes do not affect the theory of the reduced-gradient method, so the
algorithm attains an optimal solution if one exists.

Computational tests revealed the effectiveness of the column screening tech-
niques of Section 2.6. Different choices of the second objective function d were
examined. Each one substantially reduced the iteration counts. The best approach
discovered so far used the piecewise linear function in (2.29) with a = 10. The use
of a second search direction 4 provided only a marginal reduction in iterations that
failed to compensate for the extra work involved. Screening out "bad" columns
emerged as the most important enhancement to the performance of this type of
algorithm.

2.8. Computational Results

We now examine some computational results. The test set consists of 12 small
to moderately sized practical problems availab!e f- m the Systems Optimization
Laboratory at Stanford University. MINOS 5.1, a linear and nonlinear optimiza-
tion code developed by Murtagh and Saunders (see [33] and [341), figured promi-
nently in the testing. The algorithm of Figure 2-2 was implemented by modifying
the appropriate subroutines of MINOS. MINOS also provided the simplex method
used in the comparisons. Identical subroutines performed many of the common
aspects of each algorithm, including input of the problems, basis factorization, and
solution of linear systems of equations. Thus, one can attribute distinctions in per-
formance to different characteristics of the algorithms, instead of inconsistencies in

18

Figure 2-3. Results for Feasible Direction Method on Unscaled Problems

ITERATKMN CPLJ

Problem Fees. Dir. Simplex Feas./Simp? Fens. Dir. Simplex FeasJSimp
AFIRO 6 6 1.00 2.55 2.50 1.02
SHARE2B 38 48 0.79 18.17 13.55 1.34
BEAONFD 57 54 1.06 40.66 27.03 1.50
CAPRI 104 114 0.91 104.87 72.27 1.45
BRANDY 173 118 1.47 146.53 71.42 2.05
ADLITTLE 109 126 0.87 21.19 13.43 1.58
SHARE1B 139 169 0.82 75.34 40.50 1.86
ISRAEL 255 256 1.00 132.99 60.59 2.19
BANDM 225 273 0.82 226.55 134.18 1.69
STAIR 207 274 0.76 440.90 251.21 1.76
ETAM409F 261 335 0.78 268.83 180.22 1.49
E226 410 493 0.83 255.39 137.79 1.85

Geom. mean: 0.91 Geom. mean: 1.62

the implementations.
Figure 2-3 summarizes the experiments. We compare both iterations and CPU

time. Iterations pertain to Phase II only; Phase I of the simplex method generated
the same feasible vertex for the feasible direction and simplex methods. Time
comparisons measure solution of the whole problem. In each case we compute the
ratio of computational effort required by the feasible direction method to that of the
simplex method. Ratios less than 1.0 idei.tify superior performance by the feasible
direction method. At thr bottom of the table we compute the geometric mean of
the 12 ratios. Assuming all problems are equally important, this measures relative
performance accumulated over all test problems. With respect to iterations. the
algorithm achieved moderate success. Most problems required less iterations than
the simplex method; only BRANDY needed substantially more. However. each
iteration involves significant additional work, and the reduction in iterations failed
to compensate for this. CPU times exceeded those of the simplex method for every
problem.

What conclusions can one draw from these results? The pricing techniques
of Section 2.6 improve the algorithm noticeably. Iterations are usually fewer than
those of the simplex method. This marks a significant improvement over the results
of previous testing of this type of algorithm. Nonetheless, the approach still fails
to compete with the simplex method on the basis of computation time, the most
important indicator. The flexibility of the search direction and pivot rules suggests
that more successful variants may exist. However, the research reported here reveals
certain inherent difficulties with the approach. Column screening is beneficial. but
the procedures defined are not flawless; columns with small step lengths can pass the
screening test and inhibit the step length. The likelihood of such columns slipping
through aid being included amongst the promising variables is greater when P1
is large than when JPJ = 1, as in the simplex method. This fact remains true
regariless of the particular choice of search direction or pivoting strategy. In order
to succeed, any member of this class of algorithms must contain features designed
to evade this obstacle.

19

"%

CHAPTER 3: MULTIPLE-OBJECTIVE PIVOT RULES
IN THE SIMPLEX METHOD

3.1. Preliminaries
The results of Chapter 2 suggest the potential of applying a two-objective

approach to the simplex method. The simplex method tends to perform poorly on
highly degenerate linear programs, so the ability to avoid degenerate pivots may be
quite useful. Section 3.2 utilizes the results of Chapter 2 to formulate pivot rules
for the simplex method. Section 3.3 then extends these ideas. Instead of trying
to exclude certain variables, we investigate the use of a second objective function
to make good selections. Two more pivot rules arise. Further examination reveals
that these procedures attempt to estimate inexpensively the step length associated
with a potential entering variable.

Section 3.4 examines a parametric variant of the simplex method which has
performed well on highly degenerate test problems. The variant resembles the other
pivot rules of this chapter because it also utilizes a second objective function, albeit
one that remains unchanged throughout the algorithm. The similarities motivate
a new parametric algorithm that incorporates dynamic pricing. Section 3.5 then
considers the extra work required by the two-objective approach. The chapter
concludes with the development of techniques to reduce the additional computation.

3.2. Column Screening in the Simplex Method

Although motivated by feasible direction methods, Lemmas 3 and 4 apply
directly to the simplex method. Instead of choosing promising variables by (2.30),
we formulate a two-priority procedure to select the incoming variable. The following
criterion helps avoid degenerate pivots:

di, = 0,
dj, = I{ ,=0) i = 1,...m;

First Priority: a = argmin Fj,Fj <0,7j_50

Second Priority: s = argmin j. (3.1)

In other words, select a variable that passes the screening test defined by Lemma
3. If none exist, use the standard selection rule. The incoming =iable always has
a negative reduced cost, and termination occurs only when all nonbasic variables
have nonnegative reduced costs. Therefore, assuming it uses a suitable technique to
resolve degeneracy, the simplex method will obtain an optimal solution in a finite
number of iterations.

Dantzig, Wolfe and Bland (see [6], [51], and Shamir [44]) proposed pivot rules
to handle degeneracy. The intent of these criteria was to establish finite behavior of
the simplex method. The first two rules use a very specific procedure to define the
outgoing variable, while the choice of incoming variable is arbitrary amongst those
with negative reduced cost. Bland's rule explicitly determines both the incoming
and the outgoing variables. The pivot rule (3.1) provides no guarantee of conver-
gence unless accompanied by a suitable degeneracy resolution technique. To see
this, refer to Hoffmann's cycling example in [6]. Nonetheless, (3.1) differs from the

20

other rules because it deals directly with degeneracy during the selection process.
It tries to avoid problems with degeneracy instead of resolving them after their
occurrence.

Lemma 4 and the piecewise linear function of (2.29) motivate a pivot rule
identical to (3.1). The only difference is in the choice of d:

d, - 0,

di, - 1 - 1'l ...,M ;

First Priority: s - argmin t,
Fj <o,;I _<o

Second Priority: s = argmin U,. (3.2)

This rule attempts to avoid small pivot steps. Once again, the simplex method
obtains an optimal solution in a finite number of iterations.

3.3. Estimating the Step Length

The pivot rules of the preceding section use a second reduced cost 3i to avoid
poor choices of incoming variable. We now attempt to use 3 to select variables with
large step lengths. In fact, for a certain choice of d, a direct connection between dj
and the step length 8j emerges.

To begin, define d as in the previous pivot rule (3.2). Consider the following
three-tiered pivot rule:

First Priority: s = argmin -j,
F <0,7i =0

Second Priority: s = argmax ijdj,
'e <0,7 <0

Third Priority: s = argmin =-. (3.3)F, <,7j >0 dj

What motivates such a rule? The value of dj provides information on the com-
ponents of A., that correspond in the simplex method ratio test (2.24) to basic
variables smaller than Y/a. Lemma 4 establishes the undesirability of nonbasic
variables with positive values of 3j. Larger positive values are even worse since
they imply the presence of either more positive components of A., or a few large
positive components. Each of these occurences suggests a small step length. If
d > 0, use the ratio Z,/dj to incorporate information from both reduced costs.
This approach balances the good aspects of more negative values of ej with the
unfavorable aspects of large positive values of 3j. Similarly, negative values of dj
suggest the prevalence of negative values in the components of Tj involved in the
ratio test. Only positive components of Tj can bound 8j, so nonbasic variables
with more negative values of 3i are less likely to have small step lengths. The quan-
tity jdj estimates the improvement in the objective function if xj enters the basis.
Why should variables with d, = 0 receive top priority? The particular choice of d

21

pX

in (3.2) motivates this distinction. Note that one determines d9 independently of
Aj. Since dj = drl., and di, = 0 if xj, >' Y/a, one anticipates that if 3i = 0,
then, in practice, Ai = 0 for i : di, > 0. If so, none of these smaller basic variables
bounds 6,. A large step length then becomes likely.

The previous pivot rule attempts to estimate the step length associated with
x. based on the value of 3,. Many other functions of the basic variables besides the
piecewise linear one of (3.2) and (3.3) may yield helpful information about 0j. How
does one determine useful functions? Theorem 1 provides insight into this question
by establishing a direct relation between di and 6, for a suitable choice of f.
Theorem 1. Assume xj > 0, and set d, =0 and di, = 1/xi, for i -
For some j E N, let

r = argmin -a-
i:A,, >0 A,J

Then,

di ,+ (34)

Proof. In order to prove the theorem we show that 0,' is a term of the summation
that comprises 3j. Note that r identifies the component of the basis indexing the
variable that would depart the basis if xi was chosen as entering variable. With
this in mind,

O6= min =- -J.
i:Ai,j >0 Ai~j Ar'j

.(3.5)
j -- Xj'

Now, compute d, by its definition and extract 0,' from the resulting summation:

3-1
'XJ

i:AXi 0

=A", + A ,0

i:Ai,j o0

_ + 1 A,: Aij

The last equality follows from (3.5). e

22

VP. ,~,s -,~ - -~. *4P~ V* ~ f ~ ~ - ~ -~

Notice that (3.5) implies that

81 > ,Z i l,..m

Therefore, the reciprocal of 0, contributes the largest positive element to the sum
comprising 3j. One can use U to estimate 8j. Smaller values of 8, imply larger
values of its reciprocal. Once again, negative values of J, suggest relatively large
step lengths. Clearly, the term

may drastically distort this estimate. Nonetheless, in practice the canonical columns
A. tend to be fairly sparse, reducing the number of terms in the summation com-
prising yj. More importantly, , need only accurately estimate the size of 0, relative
to the step lengths associated with other potential entering variables. As long as
the values of -f. remain reasonably well behaved across all nonbasic variables, ,

will yield useful information about the relative sizes of the step lengths. In practice
the assumption that zxj > 0 is unacceptable since virtually all practical problems
exhibit degeneracy. In order to avoid this difficulty, let e > 0 represent a suitably
small tolerance and set d, = e-- if xji < e. We can now formulate a pivot rulesimilar to (3.3):

First Priority: s = argmax jgj,
-aj <o0,;j < 0

Second Priority: s = argmuin -. (3.6)Fj <0,7-j >0 3i

One can view this rule as an attempt to estimate cheaply the prohibitively expensive I
rule of maximizing the improvement in the objective function:

= argmin U09. (3.7)
j:ri <0 , -.

This procedure requires a solution of a system of equations and a ratio test for
each nonbasic variable with negative reduced cost. Contrast this with (3.6), which
requires only one additional solve. One could propose many other functions to define
d.. Regardless of the particular choice, Theorem 1 reveals the essential idea behind
it. Explicit computation of 0, for many nonbasic variables is hopelessly expensive
(in a sequential computing environment), but the solution of a single system of
linear equations can provide an inexpensive estimate of its value.

In [201 Kalan proposes a more elaborate version of (3.6) involving two ex-
tra pricing operations instead of one. Kalan's rule should provide more accurate
information about selecting a good entering variable, but it also requires more corn-
putation time than (3.6). In [47 Todd motivates a pivot rule similar to (3.6) from
the framework of an interior method for linear programming. To see the connection,

23.H

note that the components of d. specified in Theorem 1 are precisely the components
of the gradient of the logarithmic barrier function "m= In zx,.

3.4. Parametric Variants of the Simplex Method

The pivot rule (3.1) helps the simplex method avoid degenerate pivots. One
expects this rule to perform well on highly degenerate problems. We now consider
other pivot rules having nice properties with respect to degeneracy. The parametric
simplex method proposed by Gass and Saaty (see f131) provides a framework. Refer
to Dantzig [7] for additional details. The parametric method does not select columns
in order to avoid degenerate pivots, but it makes progress reducing dual infeasibility
even when a decrease in the primal objective value is stalled by degeneracy. We
consider a special case of the algorithm of Gass and Saaty. We provide a slightly
different proof of convergence because of its applicability to an extension o? the
algorithm that incorporates dynamic pricing.

Consider a linear program of the form (1.1) with a parametric objective function
(cT + Odr)x. Assume a feasible basis B0; let N0 index the corresponding nonbasic
columns. Initialize the parametric cost row d as follows:

0= 0,

= JA. 112 for j E No. (3.8) Yi

Actually, we only require that dj > 0 for j E N to prove convergence. However, the
particular choice (3. ensures that the forthcoming pivot rule remains invariant un-
der column scaling. Associated with B0 are the current values of the dual variables
7r 0 C

T Bo' and the current reduced costs TA The aot= 0 0 n = - r0 A 0 . Tealgorithm

initializes 8 at a sufficiently large value so that the parametric objective function

!N 0 (0) = 1
N 0 + 8N 0 > 0. 8 then decreases until it attains some value 81 where a

component of N 0 (O) attains zero. In other words, the current solution is optimal
for the parameterized linear program provided that 8 > 81. The component that
equals zero identifies the entering basic variable. A ratio test defines this selection
procedure. Assume no ties occur during this test. The usual simplex method ra-
tio test then determines the outgoing basic variable; one can break ties arbitrarily.
Pivot as usual, generating a new parametric objective function 2!, (0) = '61 + d, 0.
To calculate the parametric reduced costs d,,, observe that d is a second objective
vector. Compute aT = d,B-1, and then set = d -d T A.N. Note that for

the initial basis B0 , 3j = d,. We now repeat the pivot procedure. We shall see that, %
provided that there exists a unique choice of incoming variable, 0 decreases strictly
during each iteration. The parametric objective function E"(0) remains nonnegative Nthroughout the algorithm; the basis is optimal for the linear progrian (1.1) when 0

attains zero.
Figure 3-1 summarizes the algorithm. Theorem 2 establishes convergence. As-

sume an optimal solution exists.

Theorem 2. Provided there exists a unique choice of incoming variable during ev-
ery iteration, the parametric algorithm of Figure 3-1 determines an optimal solution
in a finite number of iterations.

Proof. We use induction to show that the sequence of parametric values 0, 6', 0
02,... generated by the algorithm decreases strictly during each iteration. This,
combined with the fact that each basis corresponds to a unique value of 0, assures

24

Figure 3-1. Summary of the Parametric Algorithm

Given: An initial feasible basis B = B0; N = N indexes the corresponding non-
basic columns.

1. Initialize parametric cost row d. Set d. 0 - 0 and di = 1lA.j,12 for j E N.U
2. Set 0 sufficiently large so that ZN0(0) = Z,, + 9N0

0 > 0. Note that d. = dj
during the first iteration.

3. Decrease 0 until (Iterative Loop)

3a:'.+03.=0, +03jd >0forjEN/s. (3.9)

Assume such an s exists. Use the following ratio test to determine s:

S= argmax- . (3.10)
,:ri <0 .1

Let 0 be the corresponding maximum. If 0 = 0, go to 8.

4. Given x8 , determine the outgoing variable z by the usual simplex method
ratio test. Ties may be broken arbitrarily. f the test reveals an unbounded
solution, go to 9.

5. A., replaces A. , as the r th column of the basis. Update the current feasible
solution as in the standard simplex method.

6. Calculate F and d for the new basis.
7. Go to 3.
8. Optimal solution found.
9. Terminate algorithm.

25

* U R - ~'YJ~$ J ~

convergence. Consider the first iteration. Initially, 0 = 0* is such that UN0 +030 > 0.
We then determine

01 = max
j:i <0 d,

Since i. dj = IIA.,l12 > 0, it follows (see Figure 3-1) from (3.7) and (3.8) that
0' < 0*. A strict decrease occurs during the first iteration; now consider iteration
k - 1. Let Z-1 and gk-1 represent the reduced costs of c and d at the start of
iteration k - 1. Similarly, let -7' represent element (i, j) of the matrix X in the
canonical form (1.2). Ok-k represents the value of 0 generated by the ratio test (3.8)
during iteration k - 1. By the induction hypothesis, 00 > 01 > ... > qk-i, and

3s: s k-1 + 8k-1 - =0,

+ O-3k >0, jiEN\s. (3.11)

Note that z replaces x , in the basis. The pivot element is then z.k- > 0. Perform
the pivot and examine the resulting reduced costs for iteration k:

--
_k-1 _k-1

k 3-1 --k-

--
k I..

Multiply dj by Ok-1 and add to U:

+ 1 = + -k-1-1 Z: (-1 +Okltl)
-j -1 d dj d 0

=0 by (3.11)

-k-1o- k-i=c. + Ok3j >0.

The last inequality follows from (3.11). Since + 0 k-/ > 0 and 0k
- 1 > 0, it

follows that
-kd,< > o. (3.12)

Unless the current basis is optimal, (3.12) guarantees at least one potential pivot

column satisfying (3.11). Also, observe that since C + k-- > 0, a nonbasic

column i such that > 0 and 3! < 0 cannot satisfy (3.11) for 0 < Ok-1 . Hence,
we only need consider j E N: ja < 0 as candidates to index the entering variable.

This validates the ratio test (3.10). We can now show that 0 k < 0k-1. Since

cjk + qk-13k >0, (3.12) implies the existence of ok and i such that 9k < ek- 1-k +Ok-lk +>kk k

+ kdi 0, and U + d >0. To determine 0 k and g, we choose 0k as the

26

p *p .'WWt

I + Ok > 0. To determine 6 k and S, we choose 0k as the smallest possible value
that satisfies the condition

-kk
0+6 >d-> I for j Z< 0d
0_- forj: <0

0 =max and S=argmax-j:Fj<o -"'dj- .:,ao j

Thus, the ratio test (3.10) determines S and <k <0k-i,... < 01 < 00. Remember
that we have assumed no ties occur in this test. A unique value of 0 corresponds
to each basis since the ratio test involves U and d. Therefore, a basis cannot repeat
itself during the algorithm. This completes the inductive proof. .

Theorem 2 assumes that no ties occur during the ratio test (3.10). A random
perturbation of the initial values of d, 0 validates this assumption with probability
one. --The values of 0 generated during the parametric algorithm provide a measure
of the level of dual infeasibility. Even when stalling (a long sequence of degenerate
pivots) occurs in the primal, the algorithm progresses in the dual. This suggests that
the method will perform well in the presence of degeneracy. The screening criterion
(3.1) works in the primal; it tries to avoid degenerate pivots and, hence, stalling
by using a second objective function d. The parametric algorithm also utilizes a
second objective function, albeit a constant one. From the perspective of the primal,]
however, no features of this second objct;.,ve appear to help it avoid degenerate
pivots. As we shall see, (3.1) reduces the percentage of degenerate pivots, while
the parametric algorithm does not. Nonetheless, computational tests in Chapter 4
reveal the effectiveness of both methods on highly degenerate problems.

The inability of the parametric algorithm to avoid degenerate pivots suggests
the potential of a variant that can avoid degenerate pivots while still decreasing 0-
during each iteration. Unfortunately, the parametric algorithm lacks the freedom
to choose the incoming variable. 0 need not decrease unless the ratio test (3.10)
determines the incoming variable. However, provided that one initializes dj > 0
for j E N0, 0 decreases monotonically under the parametric pivot rule. Since the
algorithm generates a sequence of feasible bases, one can reinitialize the parametric
objective at any iteration. We shall use this fact to formulate a modified paramet-
ric algorithm that screens for degenerate pirots without sacrificing the monotonic
decrease of 0.

Let us begin by defining some additional notation. Let d' and d2 represent the
- 2parametric and dynamic objectives, respectively. Let and d be the corresponding

reduced costs. Consider any iteration. As before, s indexes the entering variable
chosen by the parametric algorithm:

s = agmax - 1 (3.13)

Again, assume s is unique. If 9, > 0, Lemma 3 implies the resulting pivot will be-0
degenerate. Let q index the variable that maximizes the ratio in (3.13) while also

27

passing the screening criterion of (3.1):

q= argma (3.14)

Assume that during all previous iterations q = s. In other words, the entering
variable was always a valid choice under the parametric algorithm; hence 0 decreased
during each iteration. Suppose at the current iteration q 3 s. Then, since q does
not maximize the ratio in (3.13),

L" q (3.15)

dq

We wish to reinitialize the parametric objective vector so that q indexes a legiti-
mate entering column with respect to the parametric algorithm. In order to do so,
determine 6> 0 such that

dq.

The following lemmas motivate the proper selection of 5.

Lemma 5.

"a < dq.

Proof. Suppose the contrary:

- - 1 d .

Remember that all previous pivots were valid under the parametric algorithm. All
properties of the algorithm remain true, so by (3.12), F, < 0 and d. > 0. Subtracting

from both sides of the last inequality,

eq q !3 ?a d

Z d8

~_0

q > 0
.

_ Zqhs < 0,

But d > 0 and Zq < 0, establishing a contradiction. *

28

01=W

Lemma 6.

Proof. Since .9 6 q, use (3.15) along with the fact that anrepsiie

>

T, <q d,

U, dq Tqd, < 0 (recall that U. <0)

Lemma 7.

C, <_ cq(3.16)

Proof. Lemma 5 and property (3.12) provide the proof. By Lemma 5,

2!4,31 i

Therefore,

Cad -qd.-
3b>9 such that d q > 6. (3.17)

Note that -6 b> 0. Multiplying (3.17) by e. < 0 reveals that

Z46 < Z -jFqd

q 4(2 b) < -'qg, (recall that 2> 0)

<--

9q

Given these lemmas, Theorem 3 shows how to reinitialize the parametric ob-
jective vector so that xq enters the bitsis instead of x,,.

29

Theorem 3. Assume the standard parametric ratio test (3.13) determines a unique
entering variable during the first k - 1 iterations of the parametric algorithm. Sup-
pose that q 7 s at iteration k, and the parametric objective vector dI is replaced
by the following vector d-:

=0d- -6d3 =
I q

d -.1 forjEN: ,<O, j 0q
d3-= dg forj EN: 0>o. (3.18)

Then 3 b such that q indexes a valid choice of pivot column for the parametric

algorithm.

Proof. To prove the theorem, we must show:

(i) that d3 is a legitimate choice of initial vector for the standard parametric
algorithm.

(ii) that the algorithm will select x. to enter the basis, i.e.

q = argmax- -
i 3

(iii) that the value of the parameter O* < Ok-i.

Let B and N index the basic and nonbasic variables of iteration k. Consider
d'. By Lemmas 6 and 7, 3 6 > 0 satisfying (3.16) such that d. = dq - 6> 0. By
property (3.12) of the parametric algorithm, dj > 0 for j : Ui < 0. Furthermore,

dj = IA.iI12 > 0. Hence dJ > 0 for j E N, so d3 is a legitimate initial vector for the
parametric algorithm. This establishes (i).

Now consider the new parametric reduced costs a3. Since d3, =0, a' =

(d3)rB- 1 = d, so 93 = d! -aA = d! Using Lemma 7 and (3.18),

q b 6dq -- & d

Also, since s maximized the ratio for the standard parametric pivot rule (3.13),

- 1 F > forj: , < 0, j#q.

Combining inequalities,

cq
- 3. > -- . for i Ui < 0, j 54 q.

dq

30

% V,

In other words,
q -- argmax --.

j'r <0

This establishes (ii).
All that remains is to show that the parameter decreases when xq enters the

basis. Let 9k represent the value of the parameter at iteration k determined by the
normal parametric pivot rule (3.13). In other words,

Similarly, define 0k as the parameter associated with entering xq into the basis after
reinitializing the parametric objective row:

OB = - q
q 1
q

Using Lemma 7, we see that

eq_ q +"+e,

where e E (0,19) for some 9 > 0. Substituting the last equation into the previous
one,

q - - eqd)/ s - e
=q = -_ _ _ _

d= -

>0 >0

The last inequality holds since 0. = - /s. Although Ok > 0= note
that (9k - Ok) can be made arbitrarily small with a suitable choice of e. Recall that
Ok < 9 k-1 because all previous iterations have obeyed the normal parametric pivot

rule. It follows that 3 e sufficiently small so that 9k < 0k- . Thus, the parameter
decreases by a positive amount, proving (iii). We have established that, with a
suitable choice of e, q is the proper column selection for the parametric algorithm
with parametric objective function d3 .

Given the results of Theorem 2, Theorem 3 shows that the modified paramet- 1"
ric algorithm summarized in Figure 3-2 terminates in a finite number of iterations

31

Figure 3-2. Summary of a Modified Parametric Algorithm

Given: An initial feasible basis B = Bo; N = N indexes the corresponding non-
basic columns.

1. Initialize parametric cost row d'. Set d.. = 0 and dj = h1A.jJ1 2 for j E N,.
2. Set 0 sufficiently large so that N 0 (0) = o + d. 0 > 0.

(Iterative Loop)
3. Determine s and q by the ratio tests (3.13) and (3.14). If 0 - 0, go to 12.
4. Ifs = q, go to 9.
5. Since s 0 q, reinitialize d'. Determine > 0 such that

--1d - 'C,/Cq

6. Set

= +

fore E (0,J) so that

dq >6> qL

7. Reinitialize d' as follows:

d - d q-6

di 4d, for j :Z; < 0, j # q

d- d forj: > 0.

8. Variable xq enters the basis. Go to 10.
9. Variable x. enters the basis.

10. Determine the pivot row by the standard simplex method ratio test. If the test
reveals an unbounded solution, go to 13.

11. Pivot and update the basis. Update the current feasible solution. Compute F,
Z, and 2 for the new basi,- Go to 3.

12. Optimal solution found.
13. Terminate algorithm.

32

if accompanied by a suitable degeneracy resolution technique. The algorithm ini-
tializes the parametric objective vector in the normal way and proceeds with the
standard parametric method until a pivot selection s fails the screening criterion
(3.1). At this point a feasible basis exists, so we reinitialize the parametric vector
so that x. enters the basis instead of x,. Lemmas 5-7 and Theorem 3 describe the
reinitialization procedure and show that the parameter still decreases.

Note that the modified algorithm requires a degeneracy resolution technique to
guarantee convergence while the original one does not. This distinction arises be-
cause the modified algorithm alters the parametric objective function, whereas the S
parametric objective of the original one remains unchanged. It therefore becomes
conceivable that a basis could repeat itself where the parametric objective has dou-
bled and the parameter has halved (see [481). In this instance the parameter would
decrease at each iteration yet never attain zero. If accompanied by a degeneracy
resolver, the modified algorithm will terminate in a finite number of iterations since
it always selects variables with negative reduced costs to enter the basis.

Each iteration of the modified parametric algorithm requires computation of
two extra vectors of reduced costs. Also, the reinitialization procedure (3.18) in-
volves some more work. The total additional computation exceeds that of any of the
previously described pivot rules. Nonetheless, the approach incorporates the bene-
ficial characteristics of the parametric method and pivot rule (3.1). It progresses in
the dual during stalls in the primal, but it also attempts to avoid such stalls.

3.5. Reduction of the Additional Computation %

All of the previously described pivot rules compute reduced costs on a second
objective vector d. In the context of the revised simplex method, one must determine
d., solve an extra system of equations

rT B = dr, (3.19)

and then calculate reduced costs d for j : Fj < 0. Although not prohibitively expen-
sive, these steps comprise a signiAcant fraction of the time required for a simplex
method iteration. In this section we explore techniques to reduce the additional
work.

An opportunity to save time arises during the solution of the system of equa-
tions (3.19). Notice the similarity between solving for a and solving for the dual
variables ir:

ir B . (3.20)

One should solve (3.19) and (3.20) simultaneously. One could call a subroutine
twice:

CALL SOLVE(r, c.,...)

<additional code>

CALL SOLVE(ad,. ..).

Assuming an LU factorization represents B, each call involves solving the linear
system wTB = ZT, which in turn requires solving the linear systems

yTU = ZT

w T L = y T.

33

Thus each subroutine call must access the array containing the nonzeros of the
lower triangular matrix L and the upper triangular matrix U. Instead, suppose one
modifies the subroutine so it computes 7r and a during the same call:

CALL SOLVE(ir, a, c, d,,...).

This approach requires only one access of the array containing the factorization of
the basis B and may there ore reduce the computation time involved.

In certain situations, the extra solve (3.19) becomes unnecessary. In particular
we will demonstrate how to update a for the pivot rules (3.1), (3.2), (3.3), and (3.6)
provided that a degenerate pivot occurred during the previous iteration. We shall
also see that one can always skip the extra solve for a parametric objective vector.
Again, e, denotes a unit column vector with a one in the r t h component.

Theorem 4. Let Bk, irk, and ak represent the basis, dual variables, and secord
objective multipliers during iteration k. Let f', Zj, and d be the pivot element,
reduced costs and second objective reduced costs. Suppose tat the second objective
vector d changes by only one component after iteration k:

dk+= dB& + per, p E R 1 . (3.21)

Then T[+ Ta +p Pa'(A..- A'ji"
al) ('k+l - W'T). (3.22)

Proof. To prove the theorem we exploit the similarity between the linear systems
(3.19) and (3.20) when (3.21) holds. Note that U, < 0 and f,0 > 0, so all of the
quotients formed in the proofremain well defined.

Let s and jr index the incoming and outgoing basic variables, respectively,
during iteration k. Then,

Bk+l = Bk + (A., - A.j,)'r. (3.23)

Let u = (A., - A.j,), and suppose v solves the linear system

VT Bk = e.T
(3.24)

In oth-r words, VT contains the rth row of Bk 1. Observe from (3.23) and (3.24)
that

Bk+I = (I + uvT)Bk. (3.25)

Since ak+lBk+l= dr,+l and d,,+, = d8o, + per, substituting for Bk+1 as in (3.25)
implies that

,,I 1(I+ UvT)B, =dT, + peT

by (3.19) by (3.24)

= aTBk +pvTBk

ak+,(I+ + k,,)=4+PT . (3.26)

Now, proceed similarly to derive an analogous expression for irk+1. First of all, note
that

ac+ t = Ce + (c, - cj,)e,.

34

Since '+Bk+i = c' it follows from (3.25) that

k+1 (I + uv')B, = c,, + (c. - c3, Ke

= 'Bk + (c, - cj,)v TBT!
=0 ,741(I + UVT) = ,r' + (Co - Cj), . (3.27)

Rearranging (3.26) and (3.27), k

ak+ - 4 = (P - a,+u)v, (3.28)

-'+ -4" = ((c, - c1) - 4 u)vT. (3.29)

Substituting (3.29) into (3.28),

...- (- - Tu) (4k+ - rk). (3.30)

We shall later verify that the denominator in this expression cannot equal zero. We
must now derive expressions for a u and rT+u. Begin by multiplying both sides
of (3.28) by u:

or+iu -okU = (pa I 4+U)VTU.

Rearranging,
0+I(U + UVTU) = pVTu + aTU

aT 4+U(j + VTU) = pVTU + aTU

=0 al pvTu + kk (1 + VTU) (3.31)

Note that VTU = eTB-(A., - A.1,) = , - 1, so the denominator in (3.31) is
nonzero. Proceed similarly to derive r'+u:

, T U - 7 Tu = ((c" - cj,)- +Tu)VTu

= 4+1 u(1 + vTu) = (C. - Cj,)VTU + u

T 4+~' (c, - cj,)VTu + 7TU= +u-- (1 + VTU) (3.32)

Consider the denominator in (3.30). Remember that s and jT index nonbasic and
basic variables respectively at the start of iteration k. Substituting the value of
1k+lu from (3.32) and regrouping under a common denominator,

simplif y

C C,,) ((c - c,,)(1 + VTu) - (C. - c,,)vu)--u
(1 + vTu)

U

(c - c,)- rT (A., - A.j,)
(1 + vTu)
F. 0

(c. - irA.) - (cj, - 7rIA.j,)

(1 + vTu)

- (3.33)
(1+ vTu)

35

"'- " .%

Thus, the denominator is indeed nonzero. Apply the same logic to the numerator
of (3.30) by using (3.31):

p(l + VTu) - (pv Tu + , U)
(k+ + VTU)

pi a- aru
(1 + VTU) (3.34)

Substituting (3.33) and (3.34) into (3.30) and rearranging,

p T + p -o (A.. - A.j,)(-+l

The implications of Theorem 4 depend on the particular choice of second ob-
jective. For any of the pivot rules utilizing dynamic pricing, the result reduces
computation time whenever a degenerate pivot occurs. In this case the values of
the basic variables do not change between successive iterations; the simplex method
merely exchanges two variables that equal zero. Therefore, d.,+, = dok, which im-
plies that p = 0. Note that akA., = d8 , and, since aTB = art, aTAj , = dj,. The
result of Theorem 4 simplifies to

,~~r ,, a= T" d.,)(.+ T T.).

In order to perform the computational tests, it was necessary to handle bounded
variables. In this case a degenerate pivot may occur when the value of the incoming
basic variable differs from that of the outgoing one. Hence, d.,+, = d.. +pe,, where
p # 0; Theorem 4 still holds. For details about the different values of p generated
by the various types of degenerate pivots, refer to the appendix.

Let us now consider parametric algorithms. In this case
= -A, A.j,

=(-d. + arTA.) + (dji, - A.j,) +d. dj,

-ds 0
= d. - ('d. + dj,).

Also, regardless of whether a degenerate pivot occurs,

dBk+ = dB, + (d, - d ,)e, ,

so p = d - dji, Substituting for p and aru into the result of Theorem 4 yields

,,r = O + z(,+ - -T).

Therefore, despite the existence of the second objective, one never need perform an
extra solve during the parametric algorithm. Instead we merely update the vector
a. The same conclusion applies to any variant of the simplex method that utilizes
two constant objective vectors and computes a pair of reduced costs. One could
also avoid the extra solve by maintaining a pair of vectors for the reduced costs,
but that approach requires extra storage and extra array references, and it is not
amenable to partial pricing.

36

CHAPTER 4: COMPUTATIONAL RESULTS

4.1. Preliminaries
The author tested the previously discussed pivot rules on a set of 62 practical

problems, 53 of which are publicly available. Problem sizes (excluding slacks) range
from small (28 x 32) to large (2263 x 9799). The simplex method solved some
of these problems quite efficiently but had great difficulty with others. A heuristic
measure of its performance is the ratio of iterations required to the number of rows
in the constraints. If this ratio exceeds 5.0, one can consider the problem difficult.

The problems were partitioned into different sets in an attempt to distinguish
certain characteristics. The KETRON set, the only proprietary problems tested,
consists of nine highly degenerate problems. Degenerate pivots occurred during at
least 30 percent of the iterations for each problem when solved by the standard sim-
plex method; sometimes the percentage exceeded 80. The PILOT set contains four
linear programs generated by variants of the PILOT model. A large-scale economic
model, PILOT uses various units of measurement of the activity levels and input-
output items between the many different sectors of the economy. These conversions
of units have resulted in notoriously poor scaling of the constraints. Although all
four problems arise from the same model, examination of the structure of each prob-
lem (see [27]) reveals substantial differences. A collection of 14 staircase problems
comprises the STAIRCASE set. The STANFORD set consists of the 12 problems
used in Chapter 2 to test the modified feasible direction method. The fifth group,
labeled the SHIP set, contains six related problems. Unfortunately, the author hasno details on them. The remaining 17 problems form the MISCELLANEOUS set.

In general, these problems lack any known clategorizable features.
As with the tests of Chapter 2, the author modified MINOS 5.1 in order to

implement the desired pivot rules. The primary changes occurred in the pricing rou-
tine that determines the incoming column. All other aspects of the simplex method
remained unchanged. Once again, one can attribute distinctions in performance to
differences in the pivot rules, not inconsistencies in the implementations.

Figure 4-1 lists the test sets and problem sizes. MINOS contains an option that
scales a problem before commencing the simplex method. Since scaling may dras-
tically alter performance, both scaled and unscaled problems were tested. Partial
pricing was not used. II
4.2. Screening for Degenerate Pivots

We begin with the results for pivot rule (3.1). Recall that this rule screens
columns in an attempt to avoid degenerate pivots. We therefore label the rule as
the "Degeneracy Screen" in the following figures. Figure 4-2 displays the results
for unscaled problems. We compare both iterations and CPU time with the stan-
dard simplex method of MINOS 5.1. Note that MINOS 5.1 contains an anti-cycling
procedure designed to both prevent cycling and improve performance. Iteration
counts reveal if the information provided by the second objective function is use-
ful; the times determine if that information is worth the extra work. Also shown I
is the geometric mean of the resulting ratios for each test set; it appears in the
boxes directly below each test set. Assuming all problems are equally important(perhaps an unrealistic assumption given the disparity in the size and difficulty of
each problem), it measures relative performance of the new pivot rule for each test
set. Values less than 1.0 imply superior performance of the new rule.

37

-. -~ .• -

The Degeneracy Screen performed quite well on the KETRON set. This is
not surprising, given that the rule is explicitly designed to avoid degenerate pivots.
It substantially reduced both iterations and time on most of these problems. It
performed exceptionally well on the larger, more difficult problems. The new pivot
rule also succeeded on three of the four problems in the PILOT set. PILOTS, the
unsuccessful problem, causes only 3 percent degenerate pivots when solved by the
standard simplex method. It is therefore not surprising that, with respect to time,
the Degeneracy Screen failed to outperform the regular pivot rule on that problem.
The new pivot rule consistently reduced the iteration counts on the STAIRCASE
set as well. However, on many problems, the decrease in iterations didn't quite
compensate for the extra work per iteration. On the basis of CPU time the two
pivot rules performed similarly on this set. Slightly worse results occurred with
the STANFORD set, as only a slight overall reduction in iterations occurred. The
STANFORD set includes ISRAEL, which caused the most trouble for the new rule.
Test results on the SHIP set were consistently unfavorable with respect to both
iterations and time. One should note, however, that, given the problem sizes, the
standard pivot rule performs extremely well on these problems, so pivot rule (3.1)
aiso solves them quite efficiently. (3.1) consistently decreases the iteration counts
of the MISCELLANEOUS set, but it doesn't quite break even in terms of time.
We again encounter many problems -where time increases despite a decrease in
iterations. Notice that it performs extremely well on the problem FFFFF800.

Since the Degeneracy Screen tries to avoid degenerate pivots, it is interesting
to examine the level of degeneracy in each test problem. Figure 4-3 contains in-
formation on the frequency of degenerate pivots for each pivot rule on unscaled
problems. The new pivot rule typically reduces the frequency of such blocked piv-
ots, sometimes quite substantially (see NZFRI, PILOTJA, and FFFFF800). This
suggests that part of its success derives from the ability to avoid unnecessary piv-
ots. On highly degenerate problems, it seems likely that traversing any path of
vertices to an optimal solution will require some degenerate pivots. Indeed, many
practical problems contain blocks of activities for which dropping a key activity of
a block implies dropping all other activities in the block. Nonetheless, Figure 4-3
suggests that many such pivots performed by the simplex method are unnecessary.
Notice also that the pivot rule can still work well even when it doesn't reduce the
percentage of blocked pivots; TUFF, CYCLE and WOODW provide examples of
this behavior.

Figure 4-4 contains comparisons of the same two pivot rules for scaled prob-
lems. Relative performance remains virtually unchanged for each test set. Very few
individual problems show significant differences; SCSD8 and FFFFF800 provide two
exceptions. The PILOT set is particularly noteworthy, since scaling dramatically
improves the performance of the standard pivot rule. Nonetheless, the Degeneracy ,
Screen still results in significant improvement when applied to the scaled problems.
As before, it typically reduces the frequency of blocked pivots; refer to Figure 4-5
for details.

4.3. Screening for Small Step Lengths

Figure 4-6 contains results for pivot rule (3:2) applied to unscaled problems.
Recall that this rule attempts to exclude potential incoming variables that would
result in small step lengths (hence the label "Small Screen" in Figures 4-6 and 4-7).
It performs fairly well on the KETRON set, yielding a moderate overall improve-
ment in times. It does not perform as well on these highly degenerate problems as
the Degeneracy Screen. This is to be expected since this rule sacrifices the ability to
avoid zero step lengths in order to gain additional information about positive ones.

38

C- M .9 ~ ,~- - ~fl.' %'% ' % % .,h.]

However, this rule works extremely well on the PILOT set, achieving tremendous
reductions of both iterations and time on three of the four problems. On PILOTS,
the fourth problem, it reduces iterations but marginally increases time. This is more
than offset by its performance on the other three problems, particularly PILOTJA.
The approach does not work as well on the STAIRCASE and STANFORD sets,
as it marginally reduces iterations but typically increases time. The SHIP set once
again proves difficult, although the new pivot rule still performs well given the prob-
lem sizes. Iterations for the MISCELLANEOUS set typically decrease, but these
reductions frequently fail to compensate for the extra computation. Recall that
pivot rules (3.2) and (3.3) involve computation of the mean of the basic variables.
This comprises a significant portion of the extra work, especially with respect to the
bounded variable format of MINOS. Given the experimental nature of these tests,
the author computed the exact value of the mean during each iteration. In prac-
tice, one could approximate the mean using a variety of computationally cheaper
approaches, thus reducing the times significantly.

Figure 4-7 contains results for pivot rule (3.2) on scaled problems. On most
sets scaling marginally improves its performance relative to the usual pivot rule.
On the PILOT set, relative performance declines substantially, primarily because
scaling improves the standard rule so dramatically. On average the new pivot rule
still reduces iterations, but it now causes a significant increase in time for two of
the four problems.

4.4. Piecewise Linear Estimation of the Step Length

Figure 4-8 displays results for pivot rule (3.3) on unscaled problems. Recall
that (3.3) is a three-priority pivot rule that uses a piecewise linear function to es-
timate the step length associated with a potential incoming variable. We therefore
use the abbreviation "PLSE" in Figures 4-8 and 4-9. The approach generally suc-
ceeds on the KETRON set, except For the problem CYCLE. Great improvement in
NZFRI and DEGEN3 outweighs this bad problem. The rule executes well on the
PILOT set, dramatically reducing iterations and time on three of these very difficult
problems. Frequent reductions in iterations only occasionally reduce CPU time for
the STAIRCASE and STANFORD sets. The SHIP set continues to stymie all of the
new pivot rules, as, once again, both iteration counts and times exceed those of the
usual rule. Results are mixed on the MISCELLANEOUS set. GROW22 emerges
as the worst problem encountered for this rule. On the positive side, it is encour-
aging to note improvement on CZPROB. The ratio of iterations to rows for the
normal rule on CZPROB is about 2.0, and very few degenerate pivots occur. Thus,
pivot rule (3.3) enhances performance even though the standard method handled
the problem quite effectively.

Figure 4-9 contains the results of pivot rule (3.3) for scaled problems. Except
for the PILOT set, scaling has very little effect on relative performance. With
respect to the PILOT set, the new pivot rule still outperforms the standard rule
on average. The improvement is less dramatic than on unscaled problems, but it is
nonetheless noteworthy given the benefits of scaling for the usual rule.

4.5. Nonlinear Estimation of the Step Length

Figure 4-10 displays results for pivot rule (3.6) on unscaled problems. (3.6) uti-
lizes a nonlinear function to estimate step lengths. Positive results for the KETRON
and PILOT sets resemble those for pivot rule (3.3). In general, (3.6) does not per-
form well on the STAIRCASE set; SCSD8 is particularly discouraging. It yields a

39

slight overall reduction in iterations for the STANFORD set, but times typically in-
crease. Like the other pivot rules, it erforms unfavorably on the SHIP set. Resultsvary drastically on the MISCELLANEOUS set. It performs quite well on CZPROB

and NESM. The improvement for NESM is encouraging since the other new rules
failed to reduce CPU time. However, it performs quite poorly on 80BAU3B, as it
more than doubles the iterations and triples the time. This is the only example
where one of the new rules increased the ratio of iterations to rows to above 5.0.

Figure 4-11 summarizes the performance of t3.6) on scaled problems. Only
rainor diffcrences frcm the ur-caled : .sults occur. Eiea the PILOT set reveals only
a moderate decline in relative efficiency.

4.6. Parametric Method
Figure 4-12 shows results for the standard parametric algorithm outlined in

Figure 3-1. The algorithm performs quite well on the KETRON set. This confirmsour intuition since the algorithm's purpose is to make progress in the dual even
when stalled in the primal. The results for NZFRI are particularly encouraging.
Notice also that the parametric algorithm requires less additional work per iteration
than the previously tested rules. The algorithm exhibits tremendous success on
the PILOT set, as it solves each problem at least twice as quickly. Notice that it
solved PILOTJA more than eight times faster. This performance is not particularly
surprising since the parametric algorithm's choice of incoming variable remains
invariant under column scaling. Given the poor scaling present in these problems,
one might anticipate the benefit of a unit-free pivot rule. Nonetheless, we shall
see that the rule still performs well when MINOS scales these problems. Mixed
results characterize the STANFORD set, as we see good performances on CAPRI
and E226 accompanied by disappointing ones for BRANDY and ETAMACRO.
Results for the SHIP set strongly resemble those for the other pivot rules. None of
the two-objective strategies seems to work well. Performance varies drastically on
the MISCELLANEOUS set. The rule does quite well on STANDATA, VTPBASE
and FFFFF800. However, an alarming trend emerges for the problems GROW7,
GROW15, and GROW22. The same model generates each of these problems; only
the number of time periods changes. Performance worsens as size increases. The
parametric method requires over six times more CPU time to solve GROW22, a
figure far beyond the worst problems for any of the other pivot rules. Nonetheless,
except for these three problems, the algorithm doesn't increase CPU time by more
than fifty percent and works quite well on most of the larger, more difficult problems.

Figure 4-13 contains results for the standard parametric algorithm on scaled
problems. Although overall relative performance declines compared to the results
without scalin the approach still does well on most of the larger problems. With
respect to theKETRON set, scaling had little influence on eight of the nine prob-
lems, and relative performance remained quite favorable. However, on WOODW
the parametric algorithm required much more time than the simplex method, as the
ratio of CPU times exceeded five. Contrast this with the unscaled results, where
the parametric algorithm solved this roblem substantially faster than the simplex
method. Nonetheless, considering allproblems equally, the parametric algorithm
performs favorably on this set. As for the PILOT set, relative performance declines
substantially compared to unscaled results, but the algorithm still outperforms the
simplex method on all four problems. Scaling results in only minor differences on
the remaining test sets. Note that the parametric algorithm processes GROW15
and GROW22 much more effectively when scaled, although it still requires more
time than the simplex method.

Since the parametric algorithm is designed particularly for degenerate prob-
lems, we again examine the frequency of degenerate pivots. Figures 4-14 and 4-15

40

Lim 2 m

show the results for unscaled and scaled problems. Unlike the Degeneracy Screen,
it does not usually reduce the frequency of blocked pivots. Consider the prob-
lem DEGEN3. The algorithm dramatically outdoes the simplex method, yet the
percentage of blocked pivots increases slightly. On DEGEN2 it outperforms the
simplex method despite a significant increase in the frequency; one encounters sim-
ilar results for SEBA and 80BAU3B. This characteristic motivated the modified
parametric a1rortbm of Figure 3-2.

4.7. Summary

Summarizing the results, the Degeneracy Screen appears to be the best of the
pivot rules that utilize a dynamic second objective vector. It decreases iteration
counts on the vast majority of problems tested. Even when iterations increase,times almost never exceed those of the standard simplex method by a factor greater

than 1.3. Also, the instances where relative performance was poorest consisted
of small to moderately sized problems that the standard method solved quite effi-
ciently. This contrasts with the new rule's ability to substantially reduce iterations
and time on highly degenerate problems. Many of these are the large, difficult prob-
ems that require large amounts of CPU time when solved by the regular method.
The Degeneracy Screen decreases the susceptibility of the simplex method to such
disasters, and it does so at minimal risk.

The main drawback of this rule is that it is unlikely to do well on problems with -

few blocked pivots like CZPROB and PILOTS. Pivot rules (3.2), (3.3), and (3.6)
attempt to alleviate this problem. They can succeed in solving fairly nondegenerate
linear programs quickly, and they perform extremely well on the PILOT set, another
group of very difficult, time consuming problems. Unfortunately, as the potential for
savings improves, so does the possibility of substantial increases in time. The worst
relative performances may occur on larger problems, and the CPU time may exceed
1.5 that of the standard rule. In rare cases the rules require twice as much time.
Despite the risks, these rules still make the simplex method less prone to disaster
since they work well on most of the large, difficult problems. Similar conclusions
arise for the parametric algorithm, but the variation in performance is much greater.
The algorithm exhibits the ability to improve or worsen times by factors greater
than six. The risk increases, but so does the payoff.

X

41

r ~.......w--

Figure 4-1. Test Problem Sizes

(KETRN) (PILOT)

Problem Name size Problem Name Size
DEGI 87 x 72 PILOT4 411 x 10001
K82 46 x 41 PILOTWE 723 x 2789
WOOD1P 486 x 2594 PILOTS 1442 x 3652
. ~m 4'i x ,U I _PILOTJA 941x 1988
TUIFF 371 x 587

,COODN 1099 x 8405
CYCLE 2234 x 2857
NZFRI 624 x 3521
DEE3 1504 x 1818

(STAIRCASE) (STANFORD)

Problem Nae size Problem Name Size ;

SCAPGR 130 x 140 AFDRO 28 x 32
SCORPICN 389 x 358 ISHARE28 97 x 79

SC205 206 x 203 BECOF 174 x 262

SCSO1 78 x 760 CAPRI 272 x 353

SCTAP1 301 x 480 BRANDY 221 x 249 !

SCFXM1 331 x 457 ADUTTLE 57 x 97
SCAGR25 472 x 500 SHARE1B 118 x 225
SCSI6 148 x 1350 ISRAEL 175 x 142

SCFXM2 661 x 914 BANOM 306 x 472

SCRS8 491 x 1169 STAIR 357 x 467
SCSOB 398 x 2750 ETAMtM 401 x 688
SCFXWI3 991 x 1371 E226 224 x 282
SCTAP2 1091 x 1880
SCTAP3 .1481 x 2480

(SHIP) (MISC.)
Problem Name Size Problem Name Size
SHIP04S 403 x 1458 RECIPE 92 x 180
SHIP04L 403 x 2118 BORE3D 234 x 315

SHIPO8S 779 x 2387 GROW7 141 x 301

SHIP12S 1152 x 2763 SESA 516 x 1028

SHIP08L 779 x 4283 SHELL 537 x 1775

SHIP12L 1152 x 5427 STANATA 360 x 1075
VTPBASE 199 x 203
GROWlS 301 x 645
P_.N3 1310 x 1681
GFRDINC 617 x 1092
GROW22 441 x 946
SIERRA 1228 x 2036
FFFFF800 525 x 854
CZPRCB 930 x 3523
NESM 663 x 2923
80BAU3B 2263 x 9799
25FV47 822 x 1571

42

Figure 4-2. Results for (3.1) on Unscaled Problems

(KETRON) ITERATIONS CPU

Problem 080. Scml Simplex IDea.Simp Dom Screen - Simplex I)eaJSimp
DEGEM 17 151 1.13 3.89 4.6-w 0.84
KB2 56 65 0.89 6.38 6.41 1.00
WOOOIP 564 564 1.0 1575.32 1382.79 1.14
DEGEN2 854 1264 0.6 435.09 517.99 0.84
TUFF 553 1407 0.3 259.20 527.04 0.49

;WN 544 2381 0.6 4346.36 5590.70 0.78
CYCLE 2974 3433 0.8 6627.70 6962.93 0.95
NZFRI 2808 109i0 0.2 3598.46 11,164.49 0.32
DEGINI 4067 11096 0.3 7859.09 18027.67 0.44

Gom.Msn: 0.62 Geom. Msn: 0.701

(PILOT) ITERATIONS CPJ"

SProblem -on. Screw Simplex DO iSimp Dec. Screen Simplex Deg.Simp
PILOT4 2622 3811 0.6 1807.78 2069.30 0.87
PILOTWE 9427 15730j 0.6 11853.12 15527.7C 0.76
PILOT 3857~ 4024 * .9 14516Z.54 136832.0 1.0
PLOTJA 276971 50563 0.51 4332J.841 64719S.7C 0.6

a :soM oMMi. 0.86 Glam.Mm 0.3

(STAIRCASE) ITERATINS CPJI

Problem Dec. Screw Simplex DegiSimp Dec. Screen Simplex Dea./Simp
89 91 0.98 15.35 13.90 1.10

SCRION 138 138 1.00 50.23 44.40 1.13
SC205 120 139 0.86 26.11 25.80 1.01
SCSD1 218 293 0.74 67.44 74.20 0.91
SCTAPI 322 389 0.83 96.00 95.10 1.01
SCFXM1 410 393 1.04 129.87 108.30 1.20
SCAOR25 420 472 0.89 164.53 157.10 1.05
SCSC6 416 804 0.52 193.06 295.50 0.65
SCFX2 853 848 1.01 507.38 424.50 1.20
SCRS 862 1003 0.86 446.72 430.20 1.04
SCS0S 1169 1219 0.96 1035.76 912.20 1.14
SCFXw3 1249 1355 0.92 1109.35 1023.70 1.08
SCTAP2 1119 1503 0.74 1053.04 1198.30 0.88
SCTA 1679 1755 0.94 2113.72 1821.60 1.16

Gsom. Men: 0.87 Gom. Mmn 1.03

43

I'

Figure 4-2(cd. Reults for (3.1) on Unecaled ProblerS

(STANFORD) ITERATIONS CP

ProblemScre Simplex eDaJSimo D. S Simplex DOaSimp
9 9 1.00 2.33 2.36 0.99

SHAREW 132 105 1.26 17.37 13.55 1.28
BEAND 97 87 1.00 32.34 27.03 1.20
CAPRI 278 320 0.67 76.57 72.27 1.06
BRANDY 319 296 1.08 91.66 71.42 1.28
ADUTTLE 123 144 0.85 12.8 13.43 0.96
SHAREIB 309 28 1.0 53.21 40.50 1.31
ISRAL 404 298 1.3 90.63 60.59 1.50
BAJOM 319 445 0.7 117.45 134.18 0.88
STAIR 44 521 0.8 240.0L 251.21 0.96
EAWRO 491 640 0.7 166.86 180.2 0.93
E226 639 561 1.10 180.8 137.7' 1.31

GOmMMUM 0.9! Cea. Mi: 1.12.

(SHIP) ITERATIONS CPU

Problem D. S Simplex DeaJSimo Dm Simplex De./Simp
SHIP4S 156 148 1.05 106.13 91.30 1.18
SHIP04L 233 220 1.06 201.12 159.1€ 1.26
SHIPMS 252 246 1.02 283.14 231.20 1.22
SHIP12S 419 448 0.94 538.16 478.20 1.13
SHIP08L 453 449 1.01 726.93 561.4 1.30
SHIP12L 92a 73 1.06 1711.54 i344.20 1.27

Gom.m: 1.0 Geam. i 1.23

(MISC.) ITERATIONS CPU

Problem o. Screen Simplex De./Simp Dea. Screen imlex Dea./Simp
RECIPE 33 33 1.00 6.6 6.60 1.03
BORE3D 131 111 1.18 35.36 29.94 1.18
GRO7 167 167 1.00 59.44 53.60 1.11
SA 175 212 0.83 104.80 106.80 0.98
SHEL 239 258 0.93 157.41 143.23 1.10
STMJDTA 218 373 0.58 98.26 130.70 0.75
VTPBASE 236 423 0.56 46.14 65.40 0.71
GROW15 50 512 0.99 311.54 262.80 1.19

664 678 1.01 611.26 477.71 1.28
GPIC 699 682 1.02 336.8 278.86 1.21
OW22 956 901 1.06 623.44 630.30 1.31

SIERRA 926 1316 0.70 942.93 1145.8 0.82
FFFFF600 657 2027 0.32 358.07 876.63 0.41

1720 1841 0.93 2040.57 1773.07 1.15
NESM 4849 5153 0.94 4621.65 4051.30 1.14
8OBAU3B 8369 605 1.04 23516.8 19078.97 1.23
25FV47 8816 9072 0.97 10610.17 8721.53 1.22

OeomMu: 0.85 Gmi: 1.01

44

Figure 4-3. Blocked Pivt for (3.1) on Unsealed Problem

(KTRN DGSCREE SIMPLEX

Problem iterations S Blocked % Blocked Iterations # Blocked % Bocked
DGN176 35.3 15 6 40.0

K8 2 7965 25 38.5
W011 6430 50564 328 58.2
DEE2 5 42 5181264 776 61.4
TLF 5326 451407 554 39.4
VVCD 54 8 802361 891 37.4

CCE2974 286 94.4 3433 3209 93.5
NZFRI 2806 733 26.1 10970 5677 51.8

4067. 253___. ___2.4 _____ 11096, 9038, 81.5

(PILOT) 0EGSREE[SI MPLEX

Problem iterations #8 Blocked 1% Blocked Itrtons 1# Blocked 1% Blocked
PILOT4 2622 1171 4.5 1 38111 562 14.7
PILOTWE 9427w 3031 3.2 157301 2406~ 15.3
PRLOTS 385781 479 1.2 402471 11921 3.0
PLOT JA 276971 13241 4.8 1 50563j 106131 21.0

(STAIRCASE) D80.LSCRE SIMPLEX

Problem !,orations T. Blocked % Blocked Iterations # Blocked % Blocked
SC;JGR7 89 F 10.1 91 9 9.9
SCORION 138 58 42.0 138 58 42.0
SC205 120 4 3.3 139 14 10.1
SCSD1 218 96 44.0 293 127 43.3
SCTAPI 322 50 15.5 389 106 27.2
SCFXMAI 410 99 24.1 393 112 28.5

SCG15420 52 12.4 472 70 14.8
SCSDG 416 148 35.6 804 311 38.7
SCFXM2 853 164 19.2 848 235 27.7
SUMS 8621 175 20.3 1003 200 19.9
SCSD6 11691 386 33.0 1219 569 46.7 1
SCFXWI 12491 266 21.5 1355 365 26.9
SCTAP2 1119 446 39.9 1503 613 40.8
ISCTAP3 1___ 79_ 693, 41.3 1755, 911, 51.9

45

0 W IV
if

Figure 4-3(cid). Blocked Pivot for (3.1) on Unocaled Problems

(STANFORD) DESCl SIMPLEX

Problem Iterations 0 Blocked % Blocked Iterations 0 Blocked % Blocked
AFIRO 9 5 55.6 9 5 55.6
SHARE20 132 21 15.9 105 22 21.0
BEArF 87 6 6.9 87 6 6.9
CAPRI 278 14 5.0 320 25 7.8
BRANDY 319 23 7.2 296 36 12.2
ADUITTLE 123 10 8.1 144 18 12.5
SHAREIB 309 0 0.0 286 2 0.7
ISRAE. 404 2 7.2 298 52 17.4
BANOM 319 18 5.6 445 36 8.1
STAIR 44 15 3.3 52 31 5.9
ETAMACRO 491 138 28.1 64 210 32.8
22 63: 32 5.0 581 83 14.3

(SHIP) DE.SCRIEE SIMPLEX

Problem Iterations [# Blocked % Blocked Iterations I# Blocked % Blocked
SHIIP04S 15 34 21.6 148 28 18.9
SHIP04L 233 45 19.3 220 37 16.8
SHIPOOS 252 66 26.2 246 61 24.6
SHIP12S 419 80 19.1 44i 86 19.2
SHIP08L 453 78 17.2 44 66 15.1
SHIP12L 929 173 16s' 8731 177J 20.3

(MISC.) ODESCEE4 SIMPLEX

Problem Iterations J locked % Blocked Iterations 0 Blocked % Blocked
RECIPE 33 3 9.1 33 3 9.1
BORE3D 131 97 74.0 11ll 90 81.1
GRlW7 167 3 1.6 167 7 4.2
SEA 175 16 10.3 212 31 14.6
SHEL 239 43 18.0 258 48 18.6
STANDATA 218 119 54.6 373 247 66.2
VTPBE 236 49 20.8 423 160 37.8
GROWLS 509 7 1.4 512 22 4.3
G6 84 14 20.5 678 148 21.8

PNC 669 26 39.9 682 329 48.2
GOWV22 956 1 1.3 901 41 4.6
SIERRA 926 460 49.7 1316 639 48.6
FFFFF800 657 141 21.5 2027 615 30.3
C:RO08 172 30 1.7 1841 57 3.1
NESM 4849 1 0.0 5153 1 0.0
80BAU3B 836 373 4.5 8059 791 9.8
25FV47 8816 121 1.4 907 720 7.9

46

,V

Figure 4-4. Results for (3.1) on Scaled Problems

(KETRON) IERATlONS CPU

Problem D Scew Simplex DeaJSima Deg. Screen Simplex Oea./Smp
1E7ENI 1 5 1.13 5.10 4.97 1.04

K82 55 55 1.00 6.46 5.98 1.08
W400DI P 693 872 0.79 1958.81 2047.52 0.96
DOEN2 612 1276 0.48 321.95 523.26 0.62
TUFF 482 1124 0.43 222.59 401.42 0.55

2320 3801 0.61 5913.36 7933.99 0.75
CYCLE 2519 3017 0.83 5506.03 5912.14 0.93
NZFRI 1832 7454 0.2 2173.41 6904.42 0.31
DEGED 4914 10453 0.4 9236.65 17283.76 0.53

Geo Mum: 0.61 Goom Mean: 0.70

(PILOT) ITERATIONS CPU ..

Problem Dec. S=e Simplex DeoJSimP -ea. Scen Simplex DeaJSimp
PILOT4 1261 1533 0.82 836.61 841.00 0.99
PILOTWE 3847 6696 0.57 4746.18 6457.30 0.74

PILOTS 12923 18165 0.71 71281.88 84860.00 0.84
PILOTJA 4788, 7114 0.6 6596.59, 7751.90 0.85

Gsom Mew: 0.8j Geom Mn1 0.851

(STAIRCASE) ITERATION CPU

Problem Dog. crew Simplex DepJSimp Dec. Screen Simplex Deo./Simp
85 88 0.97 15.20 14.30 1.06

SCOFICN 104 104 1.00 42.03 38.30 1.10
SC205 116 110 1.05 26.37 22.30 1.18
SCSD1 421 623 0.68 117.38 145.30 0.81
SCTAP1 219 216 1.01 69.77 61.40 1.14
SCFXM1 329 315 1.04 111.88 92.90 1.20
SCAFI25 300 307 0.98 121.28 105.40 1.15
SCSD6 761 1561 0.49 342.02 553.40 0.62
SCFXM2 750 874 0.86 467.02 441.20 1.06
SCRS8 562 668 0.84 307.25 302.30 1.02
SCS08 2021 4335 0.47 1799.47 3288.10 0.55
SCFXL43 1135 1223 0.93 1028.57 915.20 1.12
SCTAP2 745 753 0.9 696.66 602.50 1.16
SCTAPI 948 944 1.00 1140.78 988.30 1.15,

G40mMew: 0.85 Geom eMn: 1.00

47

Figure 4-4(ctd). Reeulte for (3.1) on Scaled Problems

(STANFORD) ITERATIONS CPU

Problem D Serm Simplex Dei;JSimp Dec. Scren Simplex Oeg./Simp
AFIRO 6 6 1.00 2.43 2.60 0.93
SHARE28 117 115 1.02 16.55 14.40 1.15
BEIF 97 98 0.99 36.76 33.10 1.11
CAPRI 238 245 0.97 66.09 57.30 1.1 d
BRANDY 361 477 0.76 101.24 111.50 0.91
ADUITTLE 110 114 0.96 12.80 12.00 1.07
SHARE1B 277 274 1.01 45.96 40.60 1.13
ISRAEL 211 296 0.65 59.21 63.30 0.94
BANDM 385 454 0.85 140.21 139.70 1.00
STAIR 465 418 1.11 295.29 253.40 1.17
ETAMAF: 386 618 0.62 147.06 190.80 , 77 71
E226 558 472 1.18 155.40 112.90 1.38

Geom. Mew: 0.93 Geom. Men: 1.05 IN

(SHIP) ITERAMNS CpU

Problem Dec. Screen Simolex DecJSimp Dec. Screen Simplex Oec./Simp
SHIP04S 155 144 1.08 115.50 95.70 1.21
SHIP04L 249 231 1.08 214.90 171.70 1.25
SHIPOSS 264 240 1.10 292.82 232.20 1.26
SHIP12S 407 399 1.02 532.92 436.00 1.22
SHIPO8L 461 449 1.03 747.431 576.80 1.30

ISHIP12L _ 911 869 1.05 1790.64 1384.40 1.29
Geom. Mmn: 1.06 Geom. Mew: 1.25

(MISC.) ITERA'TONS CPU

Problem De. Screw Simplex Dea./Simp Dog. Screen Simplex Dec./Simp
RECIPE 33 33 1.00 9.30 9.40 0.99
BORE3D 9 148 0.65 31.45 39.30 0.80
GFIVN7 151 160 0.94 56.67 53.20 1.07
SMA 317 364 0.87 155.81 158.60 0.98
SHELL 238 258 0.92 162.03 150.20 1.08
STANDATA 135 129 1.05 71.61 63.60 1.13
VTBASE 46 89 0.52 15.96 20.40 0.78
GRCW15 457 464 0.98 274.61 235.60 1.17
GG 715 699 1.02 661.01 529.50 1.25
GFRDPNC 720 659 1.09 349.04 288.20 1.21
GROW22 693 756 0.92 573.65 507.70 1.13
SIERRA 891 1351 0.6 894.51 1148.90 0.78
FFFFF800 827 939 0.88 442.36 435.10 1.02
CZPR:K 1295 1525 0.85 1593.86 1519.50 1.05 I
NESM 3359 2887 1.16 3283.11 2377.50 1.38
80BAU38 13949 17466 0.80 38422.39 37894.10 1.01
25FV47 6757 8442 0.80 7505.33 7684.40 0.98

Geom. Men: 0.9C Geom. Mean: 1.04

48

- L .

Figure 4-5. Blocked Pivots for (3.1) on Scaled Problem

(KETRON) OE.SCREEN SIP.EX

Problem Iterations 0 Blocked % Blocked Iterations 0 Blocked % Blocked
DEGEMI 17 6 35.3 15 6 40.0
KB2 55 14 25.5 55 14 25.5
WOO1P 693 406 58.6 872 542 62.2
0EGEN2 612 252 41.2 1276 729 57.1
TUFF 482 208 43.2 1124 406 36.1
VYOO0N 2320 696 38.7 3801 1811 47.6
CYCLE 2519 2174 86.3 3017 2564 85.0
NZFRI 1832 642 35.0 7454 3779 50.7
DEOENa 4914 355 72.4 10453 8195 78.4

(PILOT) DEGLSC:EEN SIMPLEX

Problem Iterations # Blocked % Blocked Iterations # Blocked % Blocked
PILOT4 1261 53 4.2 1533 166 12.1
PILOTWE 3847 62 1.6 6696 1090 16.3
PLOTS 12923 541 4.2 1616 2044 11.3
PILOTJA 4788 177 3.7 7114 613 8.6

(STAIRCASE) DEG. SCREEN SIMPLEX

Problem Iterations # Blocked % Blocked Iterations # Blocked % Blocked
85 9 10.6 86 10 11.4

SCORPIN 104 44 42.3 104 44 42.3
SC205 11 a 6.9 110 14 12.7
SCS01 421 202 48.0 623 394 63.2
SCTAPI 219 58 26.5 216 60 27.8
SCFXM1 329 33 10.0 315 41 13.0
SCAGR25 300 46 15.3 307 48 15.6
SCS06 761 185 24.3 1561 606 38.8
SCFXL42 750 69 9.2 874 118 13.5
SCRS8 562 90 16.0 668 160 26.9
SCSD6 2021 633 31.3 4335 2722 62.8
SCFXW 1135 111 9.8 1223 183 15.0
SCTAP2 745 384 51.5 753 419 55.6
SCTAP3 946, 566 59.7 944 564 59.7

49

Figure 4-5(0d). Blocked PIt for (3.1) on Sceled Probiems

(STANFORD) D SCEN SIMPLEX

Problem Iterations 0 Blocked % Blocked Iteartions 0 Blocked % Blocked
AFIRO 6 3 50.0 6 3 50.0
SHARE29 117 17 14.5 115 20 17.4
BEANF 97 12 12.4 98 17 17.3
CAPRI 238 17 7.1 245 25 10.2
BRANDY 361 11 3.0 477 28 5.9
ADUTTLE 110 9 8.2 114 13 11.4
SHAREIB 277 4 1.4 274 1 3.6
ISRAEL 251 9 3.6 296 17 5.7
BANOM 365 14 3.6 454 28 6.2
STAIR 465 1 4.1 416 52 12.4
ETA.IACRO 386 66 17.1 61 122 19.7
E226 558 39 7.0 47J 91 19.3

(SHIP) 06.CRE- SIMPLEX

Problem Iterations # Blocked % Blocked Iterations 0 Blocked % Blocked
SHIP04S 5ss 30 19.4 144 25- 17.4
SHIP04L 249 42 16.9 231 31 15.6

SHIP08S 264 s0 30.3 240 601 25.0
SHIP12S 407 90 22.1 399 68 17.0
SHIP06L 461 87 18.9 441 73 16.3

_S_IP12L_1 911_ 171 19.6 1 86 _ 171 19.7

(MISC.) DEG. SCREN SIMPLEX

Problem Iterations 0 Blocked % Blocked Iterations # Blocked % Blocked
RECIPE 33 3 9.1 33 3 9.1
BORE3D 96 41 42.7 148 85 57.4
GRO7 151 5 3.3 160 6 3.8
SEBA 317 49 15.5 364 58 15.9
SHELL 236 45 18.9 258 48 18.6
STANDATA 135 75 55.6 129 74 57.4
VTPBASE 46 9 19.6 89 38 42.7
GROW15 457 6 1.3 464 12 2.6
GCWQEB 715 165 23.1 699 204 29.2
G PNC 720 237 32.9 659 271 41.1

GROW 693 10 1.4 756 23 3.0
SIERRA 891 399 44.8 1351 552 40.9
FFFFFSO 827 169 20.4 939 346 36.8
CZPR(E 1295 43 3.3 1525 94 6.2
NESM 335 0 0.0 2887 0 0.0
8OBAU3B 1394 521 3.7 1746 1177 6.725FV47 6757 116 1.7 6442 714 8.5

50 VRI

MS

Figure 4-6. Results for (3.2) on Unscaled Problemns

(KETRON) ITERATIONS CR1J

Problem Small Screen .Simplex SmaiVlSimo Small Screen Simplex JSmail/Simp
DEOBEi 17 is 1.13 4.61' 4.64 1.04
KB2 64 65 0.98 7.05 6.4111.0
YVOO1IP 533 564 0.95 1532.7t 1382.79 1.11
DEGN2 722 1264 0.57 393.03 517.99 0.76
TLJFF 1428 1407 1.01 673.90 527.04 1.28

VOD 1476 2361 0.62 4265.33 5590.70 0.76
CYCLE 3317 3433 0.97 7571.84 6962.93 1.09
NZFRl 6716 10970 0.7 11215.05 11164.4 1.00
DEG5M8 5478 11096 0.4 10769.23 18027.67 0.601

Gwm. Mum 0.8BQ Geom. Mew: 1 0.951

(PILOT) ITERATKON CPU

Problem Small Screen '[Simplex Small/Simp Small Screen [Simplex Small/Simo
PILOT4 18931 3811 0.50 1334.59 2069.3 0.6Z
PILOTWE 102561 15730 0.65 13683.231 15527.70 0.88
PLOTS 345521 40247 0.8 137199.121 136832.00 1.00
*PILOTJA 158971 50563 0.31 26552.00j 64719.7 0.41 7

Qeom. Mom 0.54 Goom. Men: 0.61

(STAIRCASE) ITERATION CR1

Problem Small Screen simplox Small/Simp Small Screen simplox -Small/simt0
SCAGH7 78 91 0.86 14.37 13.90 1.03'
SCORION 121 138 0.88 47.69 44.40 1.07
SC205 146 139 1.05 34.25 25.80 1.33
SCSDI 235 293 0.80 72.21 74.20 0.97
SCTAP1 391 389 1.01 123.75 95.10 1.30
SCFXM1 479 393 1.22 170.42 108-30 1.57
SCOF5 428 472 0.91 197.57 157.10 1.26
SCSO6 494 804 0.61 231.1l 295.50 0.78
SCFXLW 1080 848 1.27 724.43 424.50 1.71
SCRS8 918 1003 0.92 578.60 430.20 1.34
SSCS 1350 1219 1.11 1237.74 912.20 1.36
SCFXW 1576 1355 1.16 1564.59 1023.70 1.53
SCTAP2 1922 1503 1.28 2039.18 1198.30 1.70

less3 86 1755 1.06 2553.15 1821.60 1.401

Geom. M n: 0.9- Goom. M n: 1.281 L

Ir or % %U

I..

Figure 4-6(ctd). Results for (3.2) on Unscaled Problems

(STANFORD) ITERATIONS CJ 0

Problem Small Screen Simplex Small/SIm Small Screen Simplex Small/Simp

AFRO 9 9 1.00 2.36 2.36 1.00

SHARE20 11 105 1.12 17.20 13.55 1.27
BE6AOF: a 87 1.01 34.29 27.03 1.27
CAPRI 383 320 1.20 108 01 72.27 1.49
BRANDY 308 296 1.04 99 77 71.42 1.40
ADLITTL.E 96 144 0.67 11.70 13.43 0.87
SHAREIB 227 286 0.79 46.45 40.50 1.15
ISRAEL 260 298 0.87 73.69 60.59 1.22
BANDM 496 445 1.11 194.04 134.18 1.45
STAIR 503 526 0.96 323.27 251.21 1.29
ETAM= 623 640 0.97 235.27 180.22 1.31
E226 530 581 0.91 166.11 137.79 1.21

Geom. Men: 0.9g Geom. Mmn: 1.23

(SHIP) IT.RATK C

Problem Small Screen Simplex SmalVSimp Small Screen Simplex Small/Simp
SHIP04S 189 148 1.28 131.42 91.30 1.44
SHIP04L 289 220 I.3S 237.23 159.10 1.49
SHIPOS 328 246 1.33 365.84 231.20 1.58
SHIP12S 480 448 1.07 661.721 476.20 1.38

SHIPO8L 58 449 1.31 907.8 561.4 1.62
SHIP12L 942 873 1.08 1834.97 1344.2 1.37 ,

Goom.Mem: 1 1.2 Goom.Mem: 1.481

(MISC.) ITERATIONS CPU

Problem Small Screen Simolex Small/Simp Small Screen Simplex Small/Simp
RECIPE 33 33 1.00 9.10 8.60 1.06
BORE30 192 111 1.73 50.49 29.94 1.69
GROW7 196 167 1.17 76.81 53.60 1.47
SEBA 145 212 0.68 103.56 106.80 0.97
SHELL 267 258 1.03 182.24 143.23 1.27
STANOATA 360 373 0.97 153.09 130.70 1.17
VTPBASE 257 423 0.61 49.56 65.40 0.76
GROW15 586 512 1.14 419.16 262.80 1.59

660 678 0.97 678.23 477.71 1.42
GFRDPNC 843 682 1.24 442.67 278.86 1.59
GROW 1166 901 1.29 1142.85 630.30 1.81
SIERRA 1219 1316 0.93 1388.48 1145.80 1.21
FFFFF800 1445 2027 0.71 840.98 878.63 0.96
CZPRO8 1439 1841 0.78 1874.40 1773.07 1.06
NESM 461 5153 0.90 4730.09 4051.30 1.17
80BAU38 5743 8059 0.71 18236.62 19078.97 0.96
25FV47 5554 9072 0.61 7420.03 8721.53 0.85

Gbm, Mew- 0.93 Goom. Mew: 1.20

52

Figure 4-7. Reesults for (3.2) on Scaled Probem

(KETRON) ITERATIMISe8t

Problem Small Screen Simpiex SmallVSlmo Small scree SlmpIox Smalitsimp
060811 17 15 1.13 5.19 4.97 1.04
K82 50 55 0.91 8.31 5.98 1.06I
W~OOIP 724 872 0.63 2084.53 2047.52 1.01
DEGEN2 830 1276 0.65 435.95 523.26 0.83
TU.FF 931 1124 0.83 432.37 401.42 1.08

WD 3306 3801 0.87 8698.37 7933.99 1.10
CVUE 2723 3017 0.90 8382.93 5912.14 '1.08
NZFRI 4110 7454 0.55 4957.61 69.04.42 0.72
06080N 3717 10453 0.3@ 7564.16 17283.76 0.44

Geom.MWon: 0.7r Geom. Man: 0.901

(PILOT) ITERATiON CPtU

Problem Small Screen Sim- lox SmaIVllSmo Small Screen Simolex Small/Simo

PILOT481 13 .9 222 4. 1.49
PILOTWE 3626 6696 0.54 4801.64 6457.3 0.74
PLOTS63 Ile 0.71 70873.46 84660.0 0.8
PILQTJA 75, 14 1.0 1 10272.01l 7751.9 1.3

(STAIRCASE) ITERATION CR1J

Problem Small Screen Simplex -Small/Simp Small Screen Simplex mlio
SCAGR? a1 88 0.92 15.58 14.30 1.09
SOORION 102 104 0.98 44.26 38.30 1.16
SC205 112 110 1.02 30.37 22.30 1.36
SCSDI 384 623 0.62 111.53 145.30 0.77
SOTAPI 265 216 1.23 87.12 6 1.40 1.42
SCFXMI 414 315 1.31 150.94 92.90 1.62
SCAPR25 412 307 1.34 191.06 105.40 1.81
SCSO6 864 1561 0.55 401.45 553.40 0.73
SCFXL42 912 874 1.04 629.58 441.20 1.43
SCRS8 473 668 0.71 281.04 302.30 0.93
SCSDS 2475 4335 0.57 2319.54 3286.10 0.71
SCFXWM 1478 1223 1.21 1492.70 915.20 1.63
SCTAP2 798 753 1.0 784.83 602.50 1.30
SOTAP3 967, 944, 1.0 1238.24, 988.30 1.25

Gloom Mew: 1 0.93 Gown.Mean: 1 1.18

53

Figure 4-7(ctd). Results for (3.2) on Scaled Problems

(STANFORD) ITERATIONS CRj

Problem Small Screen Simplex SmalvSimp Small Screen Simplex Small/Simp
ARRO 6 6 1.00 2.52 2.60 0.97
SHARE20 92 115 0.86 15.13 14.40 1.05
BEACOM 96 96 1.00 38.58 33.10 1.17
CAPRI 311 245 1.27 S6.93 57.30 1.55
BRAtDY 361 477 0.76 112.39 111.50 1.01
AOUJTTLE 9 114 0.84 12.25 12.00 1.02
SHARElS 144 274 0.53 31.09 40.60 0.77
ISRAEL 250 298 0.84 68.62 63.30 1.08
BANDM 474 454 1.04 187.74 139.70 1.34
STAIR 453 418 1.08 333.95 253.40 1.32
ETMWAR0 398 618 0.64 166.0 190.8 0.87
E226 401 472 0.65 128.15 112.9 1.14

Geom. Mun: 0.87 Geom. Men: 1.09

(SHIP) ITERATIONS CPU

Problem Small Screen Simolex Small/Slmp Small Screen Simplex SmalVSimp
SHIP048 184 144 1.28 131.24 95.7C 1.37
SHIP04L 295 231 1.28 241.24 171.7C 1.41
SHIPOSS 322 240 1.34 363.67 232.2C 1.57
SHIP12S 493 399 1.24 670.8 436.0C 1.54
SHIP08L 5461 44 1 12 86 3 .01 576.6 1.50

-SHIP12L. 9321 869 1.07 1905.4A 1384.4 1.38
OGm.MeMn: 1.24 Geom.Men: 1.46

(MISC.) ITERATIONS CPU

Problem Small Screen Simolex SmaHl/Simp Small Screen Simplex Small/Simp
RECIPE 33 33 1.00 9.65 9.40 1.05
BORE30 123 148 0.83 39.25 39.30 1.00
GFIW 162 160 1.01 66.47 53.20 1.25
SEBA 300 364 0.8 166.74 158.60 1.05
SH..L 262 258 1.02 185.39 150.20 1.23
STANDATA 144 129 1.12 77.87 63.60 1.22
VPASE 70 89 0.79 21.61 20.40 1.06
GROW15 590 464 1.27 423.99 235.60 1.80
G*M 751 699 1.07 759.85 529.50 1.44
GF 65s 659 1.0 352.16 28.20 1.22
GROW22 1136 756 1.51 1135.47 507.70 2.24
SIERRA 1106 1351 0.82 1218.45 1148.90 1.06
FFFFFS00 1103 939 1.17 663.07 435.10 1.52

6ZPR08 834 1525 0.55 1147.56 1519.50 0.76
NESM 2663 2867 0.92 2905.48 2377.50 1.22
806AU3B 9656 17466 0.56 30330.45 37894.10 0.80
25FV47 4014 8442 0.48 4884.02 7684.40 0.64

Geom. Mom 0.901 Geom. Men: 1. 16

54

Figure 4-8. Result for (3.3) on Unecaled Probleme

(KETRON) ITERATION CF-

rProblem PLSE Simplex PLSE/Sim PISE Simple PLSE/Sim
OW 21 1 1.4 5.1& 4.64 1.1

K82 5 68 0.8 6.49 6.41 1.01
VOOIP 527 564 0.93 1619.76 1382.79 1.17
OEGEN2 721 1264 0.57 398.36 517.99 0.77
TUFF 732 1407 0.52 362.12 527.04 0.69
MW 1923 2381 0.81 5665.30 5590.70 1.01

CYCLE 4343 3433 1.27 10233.87 6962.93 1.47
NZFRI 4781 10970 0.4 6374.83 11164.49 0.57

IDEGfD 3854 11096 0.31 7818.20 18027.67 0.43
Geom. Men: 0.72 Gom. Men: 0.86

(PILOT) nTRATnoM Cu

Problem PLSE Simplex PLSE/Sim PLSE Simplex PLSE/Sim
PILOT4 1908 3811 0.50 1343.11 2069.30 0.65
PILOTWE 4907 15730 0.31 6441.78 15527.70 0.41
iOM 40294 40247 1.0 174836.33 136832.00 1.2
PILOTJA 16897 50563 0.33 28580.93 64719.70 0.4

GgoMMeiw 0.48 Gom.mum 0.6

(STAIRCASE) ITERATIONS CRJ

Problem PLSE Simplex PLSE/Simg PLSE Simplex PLSE/Sim,
SCAGR7 107 91 1.18 18.18 13.90 1.31
SCOPINC 132 138 0.96 50.88 44.40 1.15
SC205 112 139 0.81 27.37 25.80 1.06
SCSD1 224 293 0.76 72.11 74.20 0.97
SCTAP1 343 389 0.88 109.37 95.10 1.15
SCFXM1 408 393 1.04 143.79 108.30 1.33
SCAGR25 339 472 0.72 143.49 157.10 0.91
SCSD6 529 804 0.66 253.00 295.50 0.86
SCFXWvl 788 848 0.93 532.80 424.50 1.26
SCRS8 758 1003 0.76 443.67 430.20 1.03
SCS06 1062 1219 0.87 989.42 912.20 1.08
SCFXL8 1277 1355 0.94 1303.05 1023.70 1.271 0
SCTAP2 1223 1503 0.81 1244.67 1198.30 1.04 .
SCTAP3 1482 1755 0.84 1971.80 1821.60 1.08

Geom. Mem: 0.86 Geom. Man: 1.101

55

p

Figure 4-8(ctd). Results for (3.3) on Unscaled Problems

(STANFORD) ITERATIONS CPJ

Problem PLIE Simplex PLSE/SIm PLSE Simplex PLSE/Simp
AFRI:O 1 1 9 1.2 2.45 2.36 1.04
SHARE.U 90 105 0.86 13.45 13.55 0.99
BEACINFO 90 87 1.03 34.27 27.03 1.27
CAPRI 234 320 0.73 70.41 72.27 0.97
BRANDY 299 296 1.01 94.13 71.42 1.32
ADLITTLE 110 144 0.70 11.5 13.43 0.86
SHAREIB 180 286 0.63 35.44 40.50 0.88
ISRAEL 220 298 0.74 59.47 60.59 0.98
BANDM 328 445 0.74 132.57 134.18 0.99
STAIR 424 526 0.81 271.07 251.21 1.08
ETMAKM 564 640 0.88 216.12 180.22 1.20
E226 449 581 0.77 142.83 137.79 1.04

Geom. Mmn: 0.83 Geom. Memn: 1.04

(SHIP) ITERATIONS CPU

Problem PLSE Simplex PLSE/Sim2 PLSE Simplex PLSE/Simp
SHIP04S 177 148 1.20 125.39 91.30 1.37
SHIP04L 259 220 1.16 225.08 159.10 1.41
SHIPOOS 340 246 1.38 377.77 231.20 1.63
SHIP128 460 448 1.03 643.78 478.20 1.35
SHIP08L 556 449 1.24 930.62 1561.40 1.66

SHIP12L 1029 873 1.18 1900.62 1344.2 1.41
Geom.Mswi 1.20 Gem.Msui 1.47

(MISC.) ITERATIONS CRJ

ProblemPS Simple PLSE/SIm PLSE Simplex PLSE/Simp
RECIPE 34 33 1.03 8.73 6.60 1.02
BORE3D 121 111 1.09 35.67 29.94 1.19
GROW7 217 167 1.30 85.19 53.60 1.59
SEBA 203 212 0.96 125.35 106.80 1.17
SHEL 321 258 1.24 214.14 143.23 1.50
STANDATA 163 373 0.44 82.23 130.70 0.63
VTPBME 236 423 0.56 47.59 65.40 0.73
GROW15 662 512 1.33 481.70 262.80 1.83

647 678 0.95 645.41 477.71 1.35
712 682 1.04 376.00 278.86 1.35

GROW2 1364 901 1.51 1329.36 630.30 2.11
SIERRA 1147 1316 0.87 1302.89 1145.80 1.14
FFFFFSOO 1143 2027 0.56 660.00 878.63 0.75
CZPFK 1191 1841 0.65 1583.00 1773.07 0.89
NESM 4841 5153 0.94 4983.63 4051.30 1.23
80BAU38 8121 805 1.01 25890.15 19078.97 1.36
25FV47 586 907 0.65 7735.73 8721.53 0.89

Geom. Mm: 0.90 Geom. Man: 1.16

56

Figure 4-9. Results for (3.3) on Scaled Problems

(KETRON) ITERATIONS CPU

Problem P Simplex PLSE/SIm PSE Simolex PLSE/Simp
DEGENI 21 1 1.40 6.45 4.97 1.10
KB2 41 5I 0.75 5.73 5.98 0.96
WOOD1P 548 872 0.63 1811.45 2047.52 0.88
DEGEN2 61 127 61 0.46 346.61 523.26 0.67
TUFF 62 1124 0.56 314.10 401.42 0.78

2351 3801 0.62 6339.94 7933.99 0.60
2950 3017 0.98 7241.14 5912.14 1.2

NZFRI 2369 7454 0.32 2992.02 6904.42 0.4
DEGED 3571 10453 0 34 7805.75 17283.76, 0.4

Goom. hMeen1 0.61 Gmom.Mewu 0.77

(PILOT) FERATIONIS CPI

Problem PLSE Simple PLSE/SImp P18 Simplex PLSE/Simp
PILOT 1274 1533 0.63 929.67 841.0 1.11
PILOTWE 3058 6696 0.40 4189.90 6457.3 0.65
PILOT 15991 1616s 0.8 98436.64 84660.0 1.16
PLOTJA 4759, 7114 0.6 7365.5(0 7751.9 0.95

Gdom. Mum 1 0.69 Geom. MUMw 0.94

(STAIRCASE) ITERATIONS CPU

Problem PLSE[Simplex PLSE/Simp PLSE Simplex PLSE/SimD
SCAG7 10 66 1.36 19.67 14.30 1.38
SION 96 104 0.94 43.17 38.30 1.13
SC205 111 110 1.01 28.95 22.30 1.30
SCSD1 303 623 0.49 95.64 145.30 0.66
SCTAP1 278 216 1.29 91.42 61.40 1.49
SCFXM1 434 315 1.38 163.07 92.90 1.76
SCAOF25 417 307 1.36 182.97 105.40 1.74
SCS06 670 1561 0.43 322.38 553.40 0.58
SCFXMM 863 874 0.99 603.57 441.20 1.37
SCRS8 367 66 0.55 218.31 302.30 0.72
SCS06 2674 4335 0.62 2516.75 3288.10 G.77
SCFXkU 1366 1223 1.1 1425.30 915.20 1.56
SCTAP2 777 753 1.03 777.34 602.50 1.29
SCTAP3 994 944 1.0 1309.22, 988.30 1.32

Gowm. Mem 0.91 Gnom.Men: 1.15

57

Figure 4.9(ctd). Resuts for (3.3) on Scaled Problems

(STANFORD) ITERATIONS CPU

Problem PLSE Simplex PLSE/Sim P Simplex PLSEJSim
AFIRO 6 6 1.00 2.47 2.60 0.95
SHARE2 96 115 0.8 15.62 14.40 1.08

8E9rOW 6 96 0.91 36.24 33.10 1.09
CAPRI 251 245 1.02 74.70 57.30 1.30
BRANDY 410 477 0.86 134.50 111.50 1.21
ADUTTrLE 104 114 0.91 13.25 12.00 1.10
SHAREIB 167 274 0.61 34.61 40.60 0.86
ISRAEL 228 296 0.77 62.12 63.30 0.98
BANOM 368 454 0.61 153.95 139.70 1.10
STAIR 305 416 0.73 247.30 253.40 0.98
ETAMJ 366 618 0.59 156.73 190.80 0.83
E226 442 472 0.94 143.76 112.9 1.27

Geom.Mn: 0.82 Geom.Mw: 1.05

(SHIP) ITERATIONS CPU

Problem PLSE Simplex PLSE/Simp P.SE Simplex PLSE/Simp
SHIP04S 1641 144 1.14 126.70 95.70 1.34
SHIP04L 245 231 1.06 219.14 171.70 1.28

27 240 1.1 330.17 232.20 1.4
SHIP12S 4361 399 1.09 596.33 436.00 1.37
SHIP08L 495 449 1.1 820.471 576.60 1.42
SHIP12L 9021 669 1.0 1768.31 1384.4 1.28

Gsom. Mew: 1.10 Geom. Min: 1.35

(MISC.) [TERATlONS CPU

Problem PLSE Simplex PLSE/Sim PLSE Simplex PLSE/Simp
RECIPE 34 33 1.03 10.02 9.40 1.07
BORE3D 102 148 0.69 35.43 39.30 0.90
GF7 166 160 1.04 79.06 53.20 1.49
SEBA 279 364 0.77 149.81 158.60 0.94
SHE.L 309 258 1.20 215.01 150.20 1.43
STANDATA a1 129 0.63 56.39 63.60 0.89
VrPBASE 44 9 0.49 16.58 20.40 0.81
GROWIS 484 46 1.04 378.58 235.60 1.61
G689 699 0.99 693.84 529.50 1.31
GFROPNO 740 659 1.12 397.97 286.20 1.38
GROW2 783 756 1.04 803.14 507.70 1.58
SIERRA 1073 1351 0.79 1196.29 1148.90 1.04
FFFFF600 603 939 0.86 480.29 435.10 1.10
cZPR8 1007 1525 0.66 1390.28 1519.50 0.91
NESM 4798 287 1.66 5147.84 2377.50 2.17
60BAU38 11075 17466 0.63 34958.75 37894.10 0.92
25FV47 5488 8442 0.65 7065.85 7684.40 0.92

Qeo. Ment: 0.86 Geom. Mew: 1.16

58

Figure 4-10. Reaults for (3.6) on Unbealed Problems

(KETRON) rTERATflONSM

Problem NLSE Simplex NLSEISlM _____ Simler~ NLSEJSim
DEleo 26 1s 1.73 5.48 4.64 1.1
KB2 57 65 0.68 6.63 6.41 1.03
VOO1IP 470 564 0.63 1478.03 1382.79 1.07
OEEN2 936 1264 0.74 516.94 517.99 1.00
TUFF 964 1407 0.69 475.07 527.04 0.90
VCDM 1552 2361 0.65 4719.86 5590.70 0.84

CCE3535 3433 1.03 9903.57 6962.93 1.42
NZFRI 3389 10970 0.31 4447.94 1"1164.49 0.40

DOO6332 '11096 0.5 14607.84 18027.67 0.81
Gdom. Mem 0.751 Goom.MLinn: 0.92

(PILOT) ITERATIONS R[Problem NLSE Simplex NLSEISimg NLSE1 Simplexi NLSE/Simp
PILOT4 1 8 0.40 1075.24 2069.31 0.52
PLOTS 29941 40247 0.71 134207.6 136832.0 0.9

PILOTJA ___23962 50563 0.4 36826.71 64719.7 0.6
Geom. MomL 0.51'sGeiO 0.74

(STAIRCASE) ITERATIONS CPU

'Problem NILSE Simolx NLSE/Simg NLSE Siple NLSE/Simp
116F7 i 91 1.27 16.95 13.90 1.36

SCORION 156 138 1.13 57.19 44.40 1.29
SC20! 114 139 0.82 25.67 25.80 1.00
SCSD1 380 293 1.30 112.94 74.20 1.52
SCTAPI 337 389 0.87 107.17 95.10 1.13
SCFXMI 392 393 1.00 140.09 108.30 1.29

SA25602 472 1.28 235.73 157.10 1.50
SCS06 1052 804 1.31 487.88 295.50 1.65 i
SCFXL42 1012 848 1.19 671.61 424.50 1.58
SCRSB 1052 1003 1.05 597.51 430.20 1.39
Scsoll 2390 1219 1.96 2260.83 912.20 2.48
SCFXL4 1648 1355 1.22 1610.65 1023.70 1.57
SCTAP2 2063 1503 1.3 2126.62 1198.30 1.77

SCA31954, 1755 1.11 2656.60 1821.60, 1 .4
0mm.t Mwr~ 1. 0m.Mm:147

59 -

Figure 4-10(ctd). Results for (3.6) on UnsCled Problems

(STANFORD) ITERATIONS CPU 0

Problem NLSE Simplex NLSE/Simp MLSE Simplex NLSE/Simp
AFI:O 9 9 1.00 2.21 2.36 0.94
SHARE26 102 105 0.97 15.29 13.55 1.13

8E6NFD so 87 1.01 34.15 27.03 1.26
CAPRI 332 320 1.04 92.56 72.27 1.28
BRANDY 450 296 1.52 131.09 71.42 1.84 0

ADLITTLE 11e 144 0.81 12.84 13.43 0.96
SHAREIB 186 286 0.6 37.09 40.50 0.92
ISRAEL 312 298 1.05 80.96 60.59 1.34
BANDM 343 445 0.77 134.76 134.18 1.00
STAIR 524 526 1.00 327.2 251.21 1.30
ETAMARO 709 640 1.11 263.10 180.22 1.46
E226 616 581 1.0s 193.46 137.791 1.40

Geom.Mwn: 0.98 Geom.lMw: 1.21

(SHIP) ITERATIONS CPU

Problem E Simplex NLSE/SImN Simple NLSE/SImp
SHIP048 171 148 1.10 126.3 91.30 1.38
SHIP04L 287 220 1.30 245.581 159.10 1.54
SHIPOSS 328 246 1.33 375.59 231.20 1.62
SHIP12S 502 448 1.1 699.73 478.20 1.46
SHIP08L 512 449 1.141 s62.99 561.41 1.54
SHIP12L 1029 873 1.18 2043.791 1344.2a0 1.52 Ma

Geom. Mmn: 1.201 Geom. Mmn: 1.51

(MISC.) ITERATIONS CPU

-,oblem M.3E Simplex NLSF/Simi MSE Simplex NLSE/Simp
RECIPE 33 33 1.00 8.89 8.60 1.03
BORE3D 117 111 1.05 38.47 29.94 1.28
GFK#7 240 167 1.44 95.00 53.6 1.77

167 212 0.79 109.82 106.80 1.03
SHE.L 364 25 1.41 232.12 143.23 1.62
STANDATA 314 373 0.84 141.06 130.70 1.08
VTPBME 305 423 0.72 61.10 65.40 0.93
GRIN15 799 512 1.56 530.60 262.80 2.02

759 678 1.12 720.29 477.71 1.51
GFRDPNC 798 682 1.17 413.02 278.86 1.48
GRXY22 1263 901 1.40 1232.41 630.30 1.96
SIERRA 1172 1316 0.89 1264.08 1145.80 1.10
FFFFF800 1388 2027 0.68 823.61 878.63 0.94
CZPROB 803 1841 0.44 1066.72 1773.07 0.60
NESM 3545 5153 0.69 3494.9i 4051.30 0.86
80BAU3B 2036 8059 2.53 64370.01 19078.97 3.37
25FV47 11191 9072 1.23 14394.41 8721.53 1.65

Geom. Men: 1.03 Geom.ear: 1.31

60

' ~ S' ~ ~

Figure 4.11. Results for (3.6) on Scaled Problems

(KETRON) ITERATIONS CPR

Problem NLSE Simplex NLSE/Simp E Simplex NLSE/Simp

DEGM 21 15 1.40 5.13 4.97 1.03
K82 53 55 0.98 6.58 5.96 1.10
WOO1P 541 872 0.62 1743.81 2047.52 0.85
DEGEN2 952 1276 0.75 531.97 523.26 1.02
TUFF 586 1124 0.52 296.48 401.42 0.74
WO0[I 2059 3801 0.54 5626.50 7933.99 0.71
CYCLE 3575 3017 1.18 9486.40 5912.14 1.60
NZFRI 3222 7454 0.43 4086.44 6904.42 0.59
DEGEN3 5762 10453 0.5 13372.70 17283.76 0.77

Gwm. Mew 0.7 Geom. Men: 0.90

(PILOT) ITERATIONS CJ

Problem NLSE Simplex NLSE/SImp NSE Simplex NLSE/Simp

PILOT4 1348 1533 0.88 900.66 841.00 1.07
PILOTWE 3467 6696 0.52 4491.04 6457.30 .70
PILOTS 13276 1816 0.73 76696.9g 84860.00 0.91
PILOTJA 5388 7114 0.7g 7761.50: 7751.90 1.0

GeOm. Men: 0.7 Geon. J 0.91

(STAIRCASE) ITERATIONS CPJ

Problem NLSE Simplex NLSE/Simp MSE Simplex NLSESim
SCAGR7 91 88 1.03 16.32 14.30 1.14
SCOMM 1 125 104 1.20 53.52 38.30 1.40
SC205 109 110 0.99 27.79 22.30 1.25
SCS01 498 623 0.80 146.31 145.30 1.01
SCTAPI 329 216 1.52 104.24 61.40 1.70
SCFXM1 400 315 1.27 145.07 92.90 1.56
SCAGR25 382 307 1.24 160.53 105.40 1.52
SCSD6 1297 1561 0.83 605.33 553.40 1.09
SCFXM 1030 874 I. 1 674.94 441.20 1.53
SCRS8 515 668 0.7 300.58 302.30 0.99
SCSD8 4385 4335 1.01 4255.28 3288.10 1.29
SCFXW 1588 1223 1.30 1524.68 915.20 1.67
SCTAP2 970 753 1.2 976.63 602.50 1.62
SCTAP3 1344 944 1.42 1772.52 988.30 1.79

Geom. Mean: 1.11 Geom. Meen: 1.37

61

Figure 4-11(ctd). Results for (3.6) on Scaled Probleme

(STANFORD) n'ERATIONS CRJ

Problem NLSE Simplex NLSE/Simp NLSE Simplex NLSE/Simp
AFIRO 6 6 1.00 2.47 2.60 0.95
SHARE2 93 115 0.81 14.84 14.40 1.03

103 98 1.05 40.24 33.10 1.22
CAPRI 237 245 0.97 70.27 57.30 1.23

494 477 1.04 148.40 111.50 1.33
ADLITTLE 82 114 0.72 10.62 12.00 0.89
SHAREIB 134 274 0.49 28.46 40.60 0.70
ISRAEL 203 296 0.60 56.87 63.30 0.90
BANDM 416 454 0.92 165.99 139.70 1.19
STAIR 418 418 1.00 310.78 253.40 1.23
ETAKVC 560 618 0.91 223.56 190.80 1.17
E226 467 472 0.9% 148.97 112.90 1.32

Geom. Mean: 0.8§ Geom. Meen: 1.08

(SHIP) ERATIONS CPU

Problem NLSE Simplex NLSE/SIm NLSE Simplax NLSE/Simi
SHIP04S 176 144 1.22 135.29 95.70 1.41
SHIP04L 297 231 1.29 256.43 171.70 1.49
SHIPO8S 321 240 1.34 367.52 232.20 1.58
SHIP12S 487 39 1.22 675.87 436.00 1.55
SHIPO8L 530 449 1.18 882.771 576.8C 1.53
ISHIP12L 956 669 sag.0 1934.15 1384.4 1.40

Geom. Mun: 1.22 Geom. Mean: 1.49,

(misc.) ITERATIONS CPU

Problem NLSE Simplex NLSE/Simp NLSE Simplex NLSE/Simp
RECIPE 33 33 1.00 9.96 9.40 1.06
BORE3D 101 148 0.68 35.79 39.30 0.91
GROW7 295 160 1.84 120.33 53.20 2.26
SEBA 302 364 0.83 160.44 158.60 1.01
SHELL 361 258 1.40 237.03 150.20 1.58
STANDATA 251 129 1.95 120.37 63.60 1.89
VTPBASE 47 89 0.53 16.99 20.40 0.83
GROWl5 636 464 1.37 445.62 235.60 1.89
G4M 831 699 1.19 777.18 529.50 1.47
GFRDPNC 788 659 1.20 410.19 288.20 1.42
GR 1125 756 1.49 1123.72 507.70 2.21
SIERRA 909 1351 0.67 987.50 1148.90 0.86
FFFFF800 1314 939 1.40 769.92 435.10 1.77
CZPRCB 818 1525 0.54 1124.45 1519.50 0.74
NESM 3868 2887 1.34 3892.34 2377.50 1.64
80BAU3B 36416 17466 2.08 112980.62 37894.10 2.98
25FV47 13031 8442 1.54 15820.22 7684.40 2.06

Geom.Mean: 1.14 Geom Mean: 1.45

62

S• o . • =~~

FIgure 4-12. Reeults for Parametric Algorithm on Unscaled Problems

(KETRON) n'ERATO CJ

Problem Parametric Simplex Para./Sim Parametric Simplex Para'/Simp
OEGEN1 23 is 1.53 5.11 4.64 1.12
K82 so 6 1.23 7.43 6.41 1.16
WOOO1P 745 564 1.32 1974.86 1382.79 1.43
DEGEN2 1062 1264 0.84 463.55 517.99 0.89
TUFF 524 1407 0.37 221.55 527.04 0.42
V400DW 1841 2381 0.77 4835.80 5590.70 0.86
CYCLE 2348 3433 0.60 4612.36 6962.93 0.66
NZFRI 2268 10970 0.21 2702.98 11-164.49 0.24
OEGB8 4921 11096 0.4A 8114.37 18027.67 0.45

Geom. Men: 0.69 Geom. Men: 0., 0

(PILOT) ITERATIONS C

Problem Parametrc Simplex Para./Simp Parametric Simplex Para./Simp
PILOT4 1621 3811 0.43 964.32 2069.30 0.48
PILOTWE 3743 15730 0.24 4037.17 15527.70 0.26
PLOTS 17782 4024 0.4 61415.01 136832.00 0.4

PILOTJA 6205 50563 0.1 8023.20 64719.70 0.1

Gam. Mn 0.21 Gem.eMwn: 0.2

(STAIRCASE) ITERATIONS CPU

Problem Parametric SImplox Para./Slmp Parametri Simplex Para./Simp
SCR 102 91 1.12 16.02 13.90 1.15
SCORPIN 126 138 0.91 46.13 44.40 1.04
SC205 142 139 1.02 26.59 25.80 1.03
SCSDI 233 293 0.80 69.56 74.20 0.94
SCTAP1 241 389 0.62 72.17 95.10 0.76
SCFXM1 396 393 1.01 117.93 108.30 1.09
SCAGI25 578 472 1.22 207.12 157.10 1.32
SCSD6 592 804 0.74 251.25 295.50 0.85
SCFXM2 866 848 1.02 474.46 424.50 1.12
SCRS8 490 1003 0.49 243.76 430.20 0.57
SCS06 1709 1219 1.40 1373.20 912.20 1.51
SCFXW3 1369 1355 1.01 1090.65 1023.70 1.07
SCTAP2 774 1503 0.51 696.08 1198.30 0.58
SCTAP3 1071 1155 0.61 1247.02 1821.60 0.68

Geom. Mom: 0.85 Geom. Meln: 0.94

63

%y

Figure 4-12(ctd). Results for Parametric Algorithm on Unecaled Problems

(STANFORD) ITERATIONS CPU

Problem Parametric Simplex Para./Sime Parametric Sim lx PraSm
AFIRO 10 9 1.11 2.50 2.36 1.06
SHARE201 123 105 1.17 15.73 13.55 1.16
BE00NF 85 67 0.98 32.06 27.03 1.19
CAPRI 203 320 0.63 52.77 72.27 0.73
BRANDY 442 296 1.49 104.60 71.42 1.46
AOUITTLE 114 144 0.79 12.56 13.43 0.94
SHAREIB 266 286 0.93 43.06 40.50 1.06
ISRAL 233 296 0.78 53.77 60.59 0.89
PANDM 477 445 1.07 147.85 134.18 1.10
STAIR 679 526 1.29 310.55 251.21 1.24
ETA1#CRO 847 640 1.32 271.041 180.22 1.50

E264091 581 0.7 107.53 137.791 0.78
Geom. Memn: 0.92 Gom.Meen: 1 1.07,

(SHIP) ITERATION CPU

Problem Parametric Simplex Parai/Sime Parametric{ simplex Para./Sim
SHIP04S 2141 148 1.45 126.911 91.301 1.41
SHIP04L 287w 220 1.30 211.09 159.101 1.33
SHIPOS 293w 246 1.19 290.71 I 231.20) 1.28
SHIP12S 456j 448 1.02 529.93~ 416.4 1.1i
SHIP08L_ 5711 449 1.27 778.11 56 1.4 1.39

ISHIP12L 1 968 8731 1.11 1565.12 1344.2 1.16
Geom.Men 1.22 Geom. Mean: 1.271

(MISC.) ITERATINS CPLU

Problem Parametri. Sim lox Para./Sim Parametri Aimai X. Para.ISimp
RECIPE 33 33 1.00 8.82 8.60 1.03
BORE3D 110 ill 0.99 31.52 29.94 1.05
GRKJWV7 337 167 2.02 93.18 53.60 1.74
SEBA 149 212 0.70 88.85 106.80 0.83
SHE.L 316 258 1.22 182.15 143.23 1.27
STANDATA 74 373 0.20 47.58 130.70 0.36
VTPBSE 144 423 0.34 28.09 65.40 0.43
GRONi5 2831 512 5.53 1341.12 262.80 5.101

GM792 678 1.17 638.12 477.71 1.34
GFCM610 682 0.89 287.16 278.6 1.0Z
GMM5677 901 6.30 3916.87 630.30 6.21

WSIERRA 923 1316 0.70 899.67 1145.80 0.79
FFFFF800 604 2027 0.30 303.00 878.63 0.34
CZR08 1764 1841 0.96 2019.38 1773.07 1.14
NESM 2924 5153 0.57 2676.9 4051.30 0.66
80BAU38 6065 8059 0.75 17267.64 19076.97 0.91

d 125FV47 4386 9072 0.46, 4261.61 8721.53 0.4
Geon. Mean: 0.901 Goom. Mew 1.01

64

N-6!1 LKh

Figure 4-13. Results for Parametric Algorithm on Scaled Problems

(KETRON) ITERATIONS CPU

Problem Parametri Simplex Parui/Simg Parametri Sml Para./Sim
DEGENI 20 15 1.33 5.27' 4.97 1.0
K82 47 55 0.65 5.62 5.98 0.97U
WOOIP 698 872 0.80 196.67 2047.52 0.97
DEGEM ~ 9 1276 0.7 421.74 523.26 0.81
1T4FF 700 1124 0.62 285.28 401.42 0.71

-.OD 15464 3801 4.07 40923.70 7933.99 5.16
CvV.E 1619 3017 0.60 3710.82 5912.14 0.63

NZFRI 2595 7454 0.35 2908.8 6904.42 0.42
EGfl47913 10453 0.46 7933.6 5 17263.76 0.46

Goon. Mumi 0.82 Gom. Mew: 0.89

(PILOT) ITRTMCPU[Problem Parametric Simplex Para./Simg Parametric -Simlex- Para./Simp
PILOT418 13 0.78 697.10 641.00 0.83
PILOTWE 2216 6696 0.33 2395.27 6457.30 0.37U
PILOTS71 116 0.91 66456.56 84860.00 0.78
PILOTJA 6036,__ 7114___ 0. 7062.37 7751.90 0.91

(STAIRCASE) ITERATKON CePUMa: .

Problem Parametric Simplex Para./Simg Parametric Simplex Para.ISimp
6CG1 4 88 0.95 13.95 14.30 0.98

SOORION 114 104 1.10 45.16 36.30 1.18
SC205 132 110 1.20 26.01 22.30 1.17
SCSIDl 150 623 0.24 52.64 145.30 0.36
SCTAPI 263 216 1.22 76.12 61.40 1.24
SCFXMI 431 315 1.37 128.29 92.90 1.38
SCM ~ 356 307 1.16 127.78 105.40 1.21
SCSO6 662 1561 0.42 275.19 553.40 0.50
SCF)GA 932 674 1.07 505.06 441.20 1.14
SCRS6 513 668 0.77 256.30 302.30 0.85
SCSD8 375 4335 0.87 2975.48 328.10 0.90
SCFXW 1526 1223 1.25 1217.21 915.20 1.33
SCTAP2 720 753 0.96 649.62 602.50 1.08
SCTAP3 610, 944, 0.66 965.38, 988.30, 0.98

(3eomn. Meaw: 0.69 Geom. Meaw: 0.97

65

4' W - -l .N .e ~ ~ . 4 4, .4

Figure 4-13(ctd). Result* for Parametric Algorithm on Scaled Problems

(STANFORD) ITERATIONS CP

Problem Parametric Simplex Para./Simp Parametric Simplex Para./Sim,
ARRO 7 6 1.17 2.45 2.60 0.94
SHARE21 102 115 0.89 14.78 14.40 1.03

85 98 0.87 35.07 33.10 1.08
CAPRI 270 245 1.10 65.15 57.30 1 14
BRANDY 405 477 0.85 100.56 111.50 0.90
ADLITTLE 114 114 1.00 12.41 12.00 1.03
SHAREIB 182 274 0.66 32.46 40.60 0.80
ISRAEL 230 296 0.78 54.47 63.30 0.86
BANDM 550 454 1.21 164.56 139.70 1.18
STAIR 847 418 2.03 437.80 253.40 1.73
ETAWRO 532 618 0.86 180.27 190.80 0.94 0
E226 410 472 0.87 107.681 112.90 0.95

Geom. Memn: 0.96 Geom. Mew: 1.03

(SHIP) ITERATKS CPJ

Problem Parametric Simplex Para./SImg Parametrt Simplex Para./Sim;
SHIP04S 156 144 1.06 112.121 95.70 1.17
SHIP04L 226 231 0.98 193.32 171.70 1.13
SHIPOOS 263 240 1.10 272.17 232.20 1.17
SHIP125 397 399 0.9 462.68 436.00 1.06
SHIP08L 4831 4491 1.0 705.671 576.80 1.22
ISHIP12L 853 869 0.9 1531.11 1384.40 1.11

Qeom. Mean: 1.03 Geom. Mea: 1.14

(MISC.) ITERATIONS CRJ

Problem Parametric Simplex Para./Simp Parametric Simplex Para./Simp
RECIPE 33 33 1.00 9.51 9.40 1.01
BORE3D 119 148 0.80 34.66 39.30 0.88
GROW7 297 160 1.86 85.12 53.20 1.60
SEBA 370 364 1.02 169.57 158.60 1.07
SHE.. 283 258 1.10 170.5 150.20 1.14
STANDATA 58 129 0.45 46.1 63.60 0.72
VTP8ASE 44 89 0.49 15.97 20.40 0.78
GROW15 767 464 1.65 377.11 235.60 1.60

789 699 1.13 637.15 529.50 1.20
GF 613 859 0.93 286.S 288.20 0.99
GROW22 1232 756 1.63 835.34 507.70 1.65
SIERRA 1244 1351 0.92 1182.7 1148.90 1.03
FFFFF800 886 939 0.94 441.71 435.10 1.02 .
C2 :RB 1581 1525 1.04 1816.34 1519.50 1.20 S
NEW 3525 2887 1.22 3319.47 2377.50 1.40
806AU38 8573 17466 0.49 22105.5 37894.10 0.58 61

25FV47 4792 8442 0.57 4489.17 7684.40 0.58
Geom.Mmn: 0.93 Geom. Memn: 1.04

66

Figure 4-14. Blocked Pivots for Parametric Algorithm on UnscaleO Problems

(KETRON) PARAMETRIC SIMPLEX

Problem Iterations # Blocked % Blocked Iterations # Blocked % Blocked
DEGEI 1 23 10 43.5 1 6 40.0
KB2 80 30 37.5 65 25 38.5
WOOO1P 745 650 87.2 564 328 58.2
DEGEN2 1062 757 71.3 1264 776 61.4
TUFF 524 172 32.8 1407 554 39.4
WOO[W 1841 712 38.7 2381 891 37.4
CYCLE 2348 2124 90.5 3433 3209 93.5
NZFRI 2266 66 30.2 10970 5677 51.8
DEGEN3 4921 4092 83.2 11096 9038 81.5

(PILOT) PARAMETRIC SIMPLEX

Problem Iterations S Blocked % Blocked Iterations 1 Blocked % Blocked
PILOT4 1621 138 8.5 3811 562 14.7
PILOTWE 3743 590 15.8 15730 2406 15.3
PILOTS 17782 1281 7.2 40247 1192 3.0
PILOTJA L 6205 1000 16.1 50563 10613 21.0

(STAIRCASE) PARAMETRIC SIMPLEX

Problem Iterations 0 Blocked % Blocked Iterations # Blocked % Blocked
SCAGR7 102 3 2.9 91 9 9.9
SOFFICN 126 54 42.9 138 56 42.0
SC205 142 6 4.2 139 14 10.1
SCSDI 233 186 79.8 293 127 43.3
SCTAPI 241 63 26.1 389 106 27.2
SCFXM1 396 38 9.6 393 112 28.5
SCAGR25 578 58 10.0 472 70 14.8
SCSD6 592 275 46.5 804 311 38.7
SCFXI2 868 85 9.8 848 235 27.7
SCRSS 490 122 24.9 1003 200 19.9
SCS06 1709 871 51.0 1219 569 46.7
SCFXN3 1369 162 11.8 1355 365 26.9
SCTAP2 774 456 58.9 1503 613 40.8
SCTAP3 1071 803 75.0 1755 911 51.9

6eN

Figure 4-14(ctd). Blocked Pivots for Parametric Algorithm on Unecaled Problems

(STANFORD) PARAMETRIC SIMPLEX

Problem Iterations 0 Blocked % Blocked Iterations 0 Blocked % Blocked
AFIRO 10 5 50.0 9 5 5*5.6
SHARE2B 123 35 28.5 105 22 21.0

8EA FD 85 2 2.4 87 6 6.9
CAPRI 203 1s 7.4 320 25 7.8
BRANDY 442 36 8.1 296 36 12.2
ADUTTLE 114 3 2.6 144 18 12.5
SHAREIB 266 2 0.8 286 2 0.7
ISRAEL 233 0 0.0 298 52 17.4
BANOM 477 s0 10.5 445 36 5.1

STAIR 67 21 3.1 526 31 5.9
ETAMA 847 211 24.9 640 210 32.8
E226 409 54 13.2 581 83 14.3

(SHIP) PARAMETRIC SIMPLEX

Problem Iterations 0 Blocked % Blocked Iterations 0 Blocked % Blocked
SHIP04S 214 26 12.1 148 28 18.9
SHIP04L 287 20 7.0 220 37 16.8
SHIPO8S 293 50 17.1 246 61 24.8
SHIP12S 456 69 15.1 448 88 19.2
SHIP08L 571 67 11.7 44 681 15.1
SHIP12L 968 164 16.9 873 177 20.3

(MISC.) PARAMETRIC SIMPLEX

Problem Iterations 0 Blocked % Blocked Iterations U Blocked % Blocked
RECIPE 33 3 9.1 33 3 9.1
BORE3D 110 79 71.8 111 90 81.1
GFKN7 337 6 1.8 167 7 4.2
SEBA 149 32 21.5 212 31 14.6
SHELL 316 54 17.1 258 48 18.6
STANDATA 74 40 54.1 373 247 66.2
VTPBASE 144 57 39.6 423 160 37.8
GROW15 2831 46 1.6 512 22 4.3

792 147 18.6 678 148 21.8
GFRDPNC 610 244 40.0 682 329 48.2
GROW2 5677 88 1.6 901 41 4.6
SIERRA 923 176 19.1 1316 639 48.6
FFFFF800 604 126 20.9 2027 615 30.3
CZPR 1764 53 3.0 1841 57 3.1
NESM 2924 3 0.1 5153 1 0.0
80BAU3B 6065 938 15.5 8059 791 9.8
25FV47 4386 445 10.1 9072 720 7.9

68

Figure 4-15. Blacked Pivots for Parametric Algouithm on Scaled Problems

(KETRON) PARAMETRIC SIMPLEX 9

Problem Iterations # Blocked % Blcked Iterations # Blocked % Blocked
DEGBEI 20 9 45.0 15 6 40.0
K82 47 13 27.7 55 14 25.5
VOO1P 698 475 68.1 872 542 62.2
DEGEN2 966 599 62.0 1276 729 57.1 0
TUFF 700 320 45.7 1124 406 36.1
WOODW 15464 13938 90.1 3801 1811 47.6
CVCLE 1819 1641 90.2 3017 2564 85.0
NZFRI 2595 1132 43.6 7454 3779 50.7
DEGEN3 4793 3765 78.6 10453 8195 78.4

(PILOT) PARAMETRIC SIMPLEX

Problem Iterations * Blocked % Blocked Iterations S Blocked % Blocked
PILOT4 1189 154 I 13.0 1533 16e 12.1
PILOiWE 2218 223 '10.1 6696 1090 16.3
PLOTS 16471 1484 9.0 18165 2044 11.3
PILOTJA 6036 722 12.0 7114 613 8.6

(STAIRCASE) PARAMETRIC SIMPLEX

Problem Iterations # Blocked % I~locked Iterations # Blocked % Blocked
SCAG7 84 2 2.4 88 10 11.4 0
SORFION 114 42 36.8 104 44 42.3
SC205 132 7 5.3 110 14 12.7
SCSD1 150 115 76.7 623 394 63.2
SCTAP1 263 85 32.3 216 60 27.8
SCFXM1 431 48 11.1 315 41 13.0
SCAGi:125 356 48 13.5 307 48 15.6
SCSD6 662 364 55.0 1561 606 38.8
SCFXM42 932 105 11.3 874 118 13.5
SCRS8 513 193 37.6 668 180 26.9 :,,
SCSDS 3755 2582 68.8 4335 2722 62.8
SCFX3 1528 198 13.0 1223 183 15.0
SCTAP2 720 458 63.6 753 419 55.6
SCTAP3 8101 555 68.5 944 564 59.7 0

69

Figure 4-15(ctd). Blocked Pivots for Parametric Algorithm on Scaled Problems

(STANFORD) PARAMETRIC SIMPLEX

Problem Iterations # Blocked % Blocked Iterations 8 Blocked % Blocked
AFIRO 7 3 42.9 6 3 50.0
SHARE2B 102 25 24.5 115 20 17.4
BEAND 85 10 11.8 98 17 17.3
CAPRI 270 24 8.9 245 25 10.2
BRANDY 405 37 9.1 477 28 5.9
ADLITTLE 114 2 1.8 114 13 11.4
SHARE1B 182 8 4.4 274 10 3.6
ISRAEL 230 2 0.9 296 17 5.7
BANDM 550 28 5.1 454 28 6.2
STAIR 847 56 6.6 418 52 12.4
ETAM 532 87 16,4 618 122 19.7

422 410 77 18.8 472 91 19.3

(SHIP) PARAMETRIC SIMPLEX

Problem Iterations # Blocked % Blocked Iterations # Blocked % Blocked i
SHIP04S 156 25 16.0 144 25 17.4
SHIP04L 226 37 16.4 231 36 15.6
SHIPOOS 263 53 20.2 240 60 25.0
SHIP12S 397 77 19.4 3 9 9 6 17.0
SHIP08L 483 64 13.3 44 73 10,.3
SHIP12L 853 18 21.3 88 171 19.7

(MISC.) PARAMETRIC SIMPLEX

Problem Iterations # Blocked % Blocked Iterations # Blocked % Blocked
RECIPE 33 3 9.1 33 3 9.1
BORE3D 119 54 45.4 148 85 57.4
GFRNW7 297 9 3.0 160 6 3.8
SEBA 370 48 13.0 364 58 15.9
SHELL 283 55 19.4 258 48 18.6
STANDATA 58 20 34.5 129 74 57.4
VTPBASE 44 10 22.7 89 38 42.7
GROW15 767 26 3.4 464 12 2.6

789 216 27.4 699 204 29.2
GFPNC 613 223 36.4 659 271 41.1
GROW22 1232 70 5.7 756 23 3.0
SIERRA 1244 276 22.2 1351 552 40.9
FFFFF800 886 289 32.6 939 346 36.8
CZPFI(1581 74 4.7 1525 94 6.2
NESM 3525 6 0.2 2887 0 0.0
8OBAU3B 8573 1087 12.7 17466 1177 6.7
25FV47 4792 505 10.5 8442 7141 8.5

70

- V.- ~ -....-..-.-. ~'***v*-*.*~* * - -. p*.,*~.*. .

CHAPTER 5: EXTENSIONS AND FUTURE RESEARCH

This chapter briefly considers some untested ideas motivated by Chapters 2
and 3. Potential for improvement in feasible direction methods, dynamic pricing,
and parametric variants of the simplex method still remains. None of the ideas is
developed in detail, but the mathematics of the previous chapters should provide a
foundation for future work.

5.1. Feasible Direction Methods .
Much flexibility remains for the algorithms of Chapter 2. In particular, there

exist criteria for selecting promising variables other than (2.13) or (2.30). However,
the results of Chapter 2 suggest that any good criterion must account for the sparsity
and degeneracy present in practical problems. One need not use two objectives to
handle degeneracy explicitly. For example, one could apply the approach of Chang
and Murty's Gravitational Method (see [4]). Consider the linear program

minimize cT x

subject to Ax > b.

Assume a feasible solution x, and define

J(x) = {i : A,.x = bi}.

J(x) indexes the tight constraints corresponding to x. If J(x) = 0, x lies in the
strict interior of the feasible region, so -c provides a descent direction that permits a
positive step length. Otherwise, use the tight constraints to formulate the following
direction-finding problem:

minimize cT y

subject to AJ(). y > 0,
1-y y>O"

The nonlinear constraint ensures boundedness of the problem's feasible region. Its
optimal solution provides a descent direction with a positive step length. The 0
Gravitational Method does not maintain basic and nonbasic variables, but one could
modify the direction-finding problem and apply it to the algorithms of Chapter 2.
Specifically, consider the canonical form (1.2) and a (not necessarily basic) feasible
solution x. Let

J(X8) = {i : X =01.

The direction-finding problem becomes

minimize cTy

subject to A,(ZB),NY 0,
1 -yry > 0.

71 2
0.. " V. V .. V

The optimal solution of this problem yields a descent direction with positive step
length. This is extremely important given the susceptibility of feasible directionmethods to degeneracy. One also sees that the -approach generalizes to positive

basic variables with a suitable redefinition of J(x,). The additional work required
to solve the direction-finding problem may inhibit this approach. Nonetheless, it
illustrates another way to alleviate problems due to degeneracy.

All of the computational tests involving feasible direction methods involve only
a single column exchange in the basis during each iteration. Although this tac-
tic guarantees a descent direction, it may result in some basic variables having
substantially smaller values than nonbasic ones. Remember that the one-to-one
correspondence between vertices and bases has vanished. One can associate any
basis with any feasible solution, but the benefit of the descent directions generated
by each basis may vary dramatically. Therefore, one wishes to associate the feasible
iterate with a "good" choice of basis. Single column exchanges limit the choice of
basis, so the development of computationally efficient techniques to exchange mul-
tiple columns during a single iteration emerges as an * nportant topic. The Box
Method of Cottle and Zikan (see [54]) provides insight into this problem.

5.2. Dynamic Pricing

The dynamic pricing criteria of Chapter 3 all display the ability to reduce
the iterations required by the simplex method to solve practical linear programs.
However, we encounter many cases where the reduction in iterations fails to reduce
computation time. The need to develop additional techniques to reduce the extra
work becomes apparent. Theorem 4 actually takes advantage of a degenerate pivot
to reduce the computational effort in a multiple-priority pivot rule. Refer to [38]
and [39] for other ways to exploit degeneracy in the simplex method. Mathematical
results such as Theorem 4 should help, but one must also realize that MINOS was
developed for the single-objective format of the standard simplex method. The
implementations tested here conformed to that design. Additional modifications in
the structure of MINOS may improve the performance of multiple-objective pivot
rules.

Another approach to reducing computational time involves techniques to ap-
proximate the second objective reduced costs dj. All of the implementations com-
pute the quantities a and di explicitly during each iteration. Exploration of cheaper
techniques to approximate these quantities may lighten the computational load.

The encouraging performances of these new rules on difficult practical prob-
lems does not necessarily suggest good worst-case behavior. None of the patho-
logical problems constructed (see [3], [17], [19], [24], [25] and [53]) to demonstrate
worst-case behavior of established pivot rules for the simplex method relies on de-
generacy. Furthermore, procedures such as (3.2), (3.3) and (3.6) attempt to emulate
inexpensively the maximum-improvement pivot rule (3.7). Jeroslow [19] established
exponential worst-case behavior of that rule. It therefore seems unlikely that re-
search into this area for the pivot rules of Chapter 3 will provide any significant
results.

Finally, application of a second objective to certain nonlinear programming
algorithms also merits investigation. Dynamic pricing criteria significantly improved
the performance of the feasible direction methods of Chapter 2. This suggests the
promise of using dynamic pricing when solving nonlinear programs by the reduced-
gradient method. Lemkp's algorithm may also benefit from this technique. Lemke's
algorithm is a pivotal algorithm that can optimize certain quadratic programs in
addition to linear programs (see [41]). It solves the following linear complemeintarity

72

,
.

, , . % --- ,,_ . . - - - -.

problem:

Ix - My = q,
xiy=O, i= 1,...,m (5.1)

X,Y> 0.

Assuming nondegeneracy, the determination of a covering vector to initiate the
algorithm uniquely determines the sequence of pivot steps. However, in practice
some flexibility in the pivoting procedure may arise in the presence of degeneracy.
Theoretically one must appeal to the perturbation techniques used in the simplex

method to resolve such ambiguities. In practice it may be possible to break ties
arbitrarily without encountering a cycle; this is almost always true with respect
to the simplex method. If it also holds for Lemke's algorithm, perhaps one can
exploit the flexibility arising from degeneracy. In certain cases, Lemke's algorithm
may not find a solution to the linear complementarity problem even though one
exists; it can terminate on a ray. Freedom in selection of the entering variable
permits development of pricing criteria designed to avoid such an occurrence. In
paxticular, let M', represent a potential incoming column relative to the current
basis. Termination on a ray occurs when MjI < 0. Therefore, setting d. = 1,
d, = 0 and computing = dT.= aTM. provides a measure of the likelihood
of termination on a ray if a particular variable enters the basis. When freedom to
select the entering variable arises, one could utilize d3 to choose the variable least
likely to result in termination on a ray.

5.3. Parametric Algorithms

The parametric algorithm of Figure 3-1 specifies an initial parametric objective
vector. This is merely one of many possible legitimate initial vectors. Research
into this area may reveal new initialization procedures that further enhance the
performance of the parametric algorithm.

Parametric variants of the simplex method strongly resemble Lemke's algo-
rithm applied to linear programs. In particular (see [28]), solving a linear program
by Lemke's algorithm is equivalent to solving it by Dantzig's self-dual parametr l-
gorithm. The selection of the parametric objective corresponds to the initialization
of the covering vector. Given this relation, research into the proper selection of the
parametric objective vector should provide insight about good initial covering vec-
tors for Lemke's algorithm. Furthermore, the potential for the modified parametric
algorithm of Figure 3-2 to avoid degenerate pivots suggests an analogous variant of
Lemke's algorithm in which the covering vector changes during the course of the
algorithm in a way designed to decrease the number of iterations.

73

CHAPTER 6: SUMMARY AND CONCLUSIONS

What conclusions emerge from this work? We have seen that sparsity and
degeneracy can inhibit the progress of the reduced-gradient variants described in
Chapter 2. Utilization of a dynamic second objective function helps avoid these
obstacles and significantly improves the performance of such algorithms. Although
the modified algorithm tested here slightly outperformed the simplex method with
respect to iterations, it failed to compete in terms of computation time. The notion
of using a reduced-gradient approach to solve linear programs has existed for many
years, but very few computational tests have appeared in the literature. Chapter
2 provides new insight into this topic by identifying essential problems with the
method, describing techniques to elude these difficulties, and establishing some
computational results. Although still not competitive with the simplex method,
the results achieved here substantially improve upon the status quo. Additional
improvements in this type of algorithm may remain, but they must account for the
sparsity and degeneracy present in practical problems.

The most important aspect of Chapter 2 is the motivation of the use of two
objectives to gain useful information about nonbasic variables. Pricing out to avoid
degenerate pivots has become a computationally teasible procedure. The idea gen-
eralizes to allow pricing out to avoid small pivot steps. Chapter 2 shows that these
concepts enhance the performance of variants of the reduced-gradient method.

Chapter 3 addresses applications to the simplex method. Additional extensions
of the two-objective approach focus on estimating the step length associated with a
nonbasic variable. Explicit computation of the exact step length for each potential
incoming nonbasic variable is prohibitively expensive. Dynamic pricing provides
one inexpensive way to estimate such step lengths.

The computational tests in Chapter 4 show that any of the pivot rules using
dynamic pricing outperform the standard simplex method with regard to iterations.
Given the increasing emphasis on parallel computing, this result is useful by itself.
The results are less clear with respect to computation time, as reductions in itera-
tions frequently do not outweigh the increased work per iteration. The Degeneracy
Screen (pivot rule (3.1)) remains a safe rule, as CPU times stay close to those of the
standard simplex method for even the worst problems. Furthermore, it consistently
performs well on highly degenerate problems. Certain applications tend to generate
highly degenerate problems (for example, see [11]). Hence, one can probably an-
ticipate cases where (3.1) will always work well. The other pivot rules display the
capacity to perform well on a wider variety of problems, but this greater potential
is accompanied by increased risk of poor performance. Nonetheless, all of the dy-
namic pivot rules perform well on the majority of the large, difficult problems that
consume the-most computer time.

The final conclusion from this thesis is that despite 40 years of intensive re-
search, potential for improvement remains in the simplex method as well as other
linear programming algorithms. Many researchers tend to assume that basic re-
search in linear programming has been exhausted. The results here suggest that we
do not yet fully understand the simplex method, let alone other linear programming
algorithms. Uncharted territory remains to be explored.

74 %

CHAPTER 7: APPENDIX

This chapter elaborates on the specifics of the computational tests of Chapters 2
and 4. Certain aspects of the tests involve generalizations of the main results of this
thesis. Inclusion of these details earlier would only have obscured the important
ideas. One need not read this chapter if only interested in the major ideas; no
new mathematics will appear here. However, any reader interested in bridging the
gap between theory and practice present in many implementations may find this 1
appendix useful.

Section 1 develops a procedure to determine an optimal vertex from an op-
timal solution. There exist several different ways to find such a vertex, including
a procedure in MINOS based on the simplex method. The method defined below
strongly resembles the feasible direction methods of Chapter 2. It enables those
algorithms to produce an optimal vertex instead of just an optimal solution. Sec-
tion 2 then extends the theory of Chapters 2 and 3 to bandle the bounded variable
logic of MINOS. None of the changes involves any significant additional mathemat-
ics. Nonetheless, they provide useful insight into important aspects of a large-scale
linear programming code.

7.1. A Procedure to Find an Optimal Vertex From an Optimal Solution

The algorithms of Chapter 2 find an optimal solution to the linear program
(1.1). However, given the interest in sensitivity analysis, an optimal vertex becomes
desirable. The following procedure determines such a vertex.

Irrespective of the particular choice of promising variables, the feasible direction
method terminates with an optimal solution x* when the set P, defined in (2.13), is
empty. Let B and N index the nonbasic variables associated with x* at termination.
Let

I={jEN:j =O, xj > 0}.

Since P = , I indexes the positive nonbasic variables of x*. If I = O, x* is the
optimal vertex corresponding to B. If I : 0, x* is not a vertex. In order to identify
an optimal basis, decrease the variables in I simultaneously down to zero. Let e
represent a column vector of ones. In the framework of Chapter 2, set q, = q, = -e,
and perform an iteration of the reduced-gradient method. The resulting solution
remains optimal since Fj = 0 for i E I. During this process individual variables
in I either attain zero or drive a basic variable to zero. In the latter case a pivot
occurs. Each iteration decreases III by at least 1, so the procedure terminates with
an optimal vertex in at most I iterations.

We now consider an iteration in detail. We wish to decrease each variable in I
without violating the equality constraints Ax = b. In order to do so, define q E R" N-
by

q, = -e

qN\1= 0

BqB = -A.,q,.

Update x* by the relation
x* - x* + Oq. (7.1'

How large can 9 be? We wish to make 9 as large as possible while maintaining
nonnegativity of x* and x*. In other words,

75

,tLz , A!,.. "-0d ,t"..~, , -. r, -, -. . , . . , .. ,.

x* + Oq _> 0

=*Oq, -x I .

9< -x, jEBBUI:qj<O
qj

X*

0 = min -< (7.2)jEiBUI:qji <o qj

Let

k = argmin -x
jEBUI:q1 <o q,

If k E I, a variable in I hits zero without driving a basic variable below zero. A
pivot is unnecessary. Update x* by (7.1) and proceed with another iteration. Note
that x* = 0, so III has decreased by at least 1. Now, suppose k E B. Then a basic
variable hits zero before any variable in I does. Let r index the component of B
containing k. Define

I = {j E I: < 0}.

I indexes variables in I that can drive the r basic variable to zero. Since k E B
* and

9 < min --- <+c,
- jEI:qi <0 qj

the ratio test (7.2) implies that I 0 $. One can then choose

s = argmax xj

to index the incoming variable. Then A,, < 0 and s E I. The resulting pivot 4
maintains nonsingularity of the basis. Update x* by (7.1). Since s E I enters the

basis index and x*, = 0, II decreases by at least one. If I = 0, terminate witii an
optimal vertex. Otherwise, start the next iteration.

Shice this procedure decreases III by at least 1 during each iteration, it will drive
all positive nonbasic variables to zero within III iterations. Some flexibility exists
within the pivoting strategies. In practice, however, the procedure was unnecessary
for the majority of the problems tested, and it never required more than throe pivots
before termination. As a result, extensive experimentation was never pursued.
Note that the computation times of Figure 2-3 include any time required by this
procedure.

7.2. Extensions to Bounded Variables

For expository t)urposes we have considered linear programs of the form (1.1).
.ltHouhgli 'ne can express any linear program in this form, the transformations re-
,iirod to do ;o treqwently involve extra variables and constr ont s. which wld r,'-lilt

76

d, -- % % h %- % ***-% . * * . ". % ".. S % % % , % ,. " " * - % . " % *.- -- ","- '' ." .- *5" • " *.
•

"

in computational inefficiencies. In practice one wishes to process linear programs
in their most general form:

minimize cTy
subject to AEy = bE

AGy > bG (7.3)

ALy bL

<Y<ts.

Any linear program fits (7.3) without any transformations. Define i = (ii, G, sL)

as slacks on the constraints of (7.3). Rewrite (7.3) as

minimize c T y

subject to Ay + g - bE = (7.4
Aoy - (br, + So) = 0 (7.4)

ALy + gL - bL = 0 '

<Y < ft, E = o, 9G, L > 0.

Let

SL = g, - bL.

Then (7.4) is equivalent to

minimize cT y

subject to AEy + s_ = 0

A,3y + s,3 = 0

ALY + SL= 0

-bE <sE < -bE,

-0 <S < -bG,

-bL :S < +OC.

Letting

(AI
A= A, I

AL I

x = (YSESG,SL),

I = (l, -b , -0, -bL),

S(- b, , + t,

U77

(7.4) becomes

minimize cT TX

subject to Ax = 0 (7.5)
I <x <U.

MINOS processes the general linear program (7.3) into the form (7.5). Only the
bounds on the variables distinguish (7.5) from the standard form (1.1). Therefore,
the remainder of the appendix focuses on generalizing the results of Chapter. 9 srnd
3 to handle bounded variables.

Bounded variables generate some minor modifications to the feasible direction
methods of Chapter 2. First of all, consider a search direction q and an updated
solution Y = x + Oq as in (2.2). Equation (2.4) ensures that variables in P do not
violate the nonnegativity constraints of the standard form linear program (1.1).
We must now guarantee that such variables do not violate the bound constraints of
(7.5). In other words, for j E P,

lj < xj + Oqj < uj

SOqj < uj - x and

Oqj > lj - x

€0< 9 z 1 forj:q, > 0 andqi

0< I - x j forj:qj <0
qi

S0 <min min i -", mi
- jEP:qj<0 qj' jEP:qi>0 qj>

Similar logic applies to the basic variables in ratio test (2.5), the two-column linear
program (2.12), and the pivoting tactics outlined by (2.15-2.20).

Bounded variables also influence the choice of promising variables. (2.13) now
becomes

Pif ?!j < 0 and x j <uj, or{ p

c3 .> 0 and xj > 1j.

The modified promising criterion (2.30) and pivot rules (3.1), (3.2), (3.3) and (3.6)
all utilize reduced costs computed from a second objective vector d. Bounded
variables affect the definition of d. Recall the choice of dB defined by Lemma 3. For
i=1,...m, set

d (1 if Xj, =0,
d = 0 otherwise.

This particular choice of d identifies potential incoming variables that would cause
a degenerate pivot. In the presence of bounded variables, degeneracy occurs when
a basic variable resides at one of its bounds. Also, instead of increasing from zero,
a potential incoming variable xj may increase from its lower bound ,1 or decrease
from its upper bound u Let us examine these two cases separately. First, suppose
E) < 0, so x, increases Irom 1j. A degenerate pivot occurs if

3 i A,,j > 0, xj, = 1j, or
(7.6)A,, j < 0, Xj, = u j,.

78

sf€ a ",

ie.~~. e- r_.& -.-

Therefore, for i -1,... m, set

1 ifxii =lij, 0

di= -1 if , = uij, (7.7)
0 otherwise.

If3j = d'. = a'A.j > 0, exclude xj from consideration in order to avoid a
degenerate pivot. If Zj > 0, a degenerate pivot occurs if

i : Ai,j < 0, xji = 1ji or
(7.8)Ai~j > 07 iji = uj,.

(7.8) is the opposite of (7.6), so set d. as in (7.7), but exclude xj from consideration
if Uj < 0. Thus, the extension to bounded variables still only requires a single solve
of the form (2.26) for the vector a.

Equation (7.7) describes how to determine d. in the presence of degenerate
basic variables. This suffices for pivot rule (3.1), but the criteria (2.30), (3.2), (3.3)
and (3.6) consider positive basic variables as well. In such cases the value of a basic
variable xj no longer determines the value of dj,. Instead, consider the distance zi
of X. to its closest bound:

zi = rin {xi,, - Iii -I ,,} i = 1,... m.

The values of zi determine the values of dj,. So, for example, assuming that zi > 0,
one utilizes the following choice of d to implement pivot rule (3.6):

1/z i if xj, - j, 1.. m. (7.9)
-1/zi if xjj -lji > uj, -, =.9

In practice, set zi to e > 0 if zi < e, where e represents an appropriately defined
tolerance. Note that if Ej > 0, xj decreases if it enters the basis. In that case one
modifies pivot rule (3.6) so that nonnegative values of dj, instead of nonpositive
ones, distinguish nonbasic variables with top priority. The same approach applies
for pivot rules (3.2) and (3.3).

Theorem 4 illustrates an updating procedure for o provided a degenerate pivot
occurred during the previous iteration of the simplex method. Since the bounded
variable form (7.5) redefines the notion of degeneracy, the value of p in the update
(3.22) depends on the specifics of the pivot. In addition, MINOS 5.1 permits nonba-
sic slack variables with negative lower bounds and positive upper bounds to reside
at any value between the bounds. This tactic attempts to improve the stability
of the feasible iterates. It also aids recovery from singular bases and helps with
restarts. This feature generates two additional types of degenerate pivot. A total
of six possible types of degenerate pivot can occur. Each one is listed below, along -
with the corresponding value of p. Remember that, regardless of the specific case,
a degenerate pivot during the kth iteration implies that

d, +1 = d.k + per. 0

Let 9 and Jr index the incoming and outgoing variables during the degenerate pivot
of iteration k.

79

Case 1. Suppose x. = 1, and x), = 1,.. Both the incoming and outgoing variables
reside at their lower bounds. Therefore, dh+l,() = dB,,(), So P = 0.

Case 2. Suppose x. = 1, and xj, = uj,. The entering variable resides at its lower
bound, while the outgoing variable resides at its upper bound. In this case (7.7) or
(7.9) implies that ds+1(,) = -dB,(,), so p = -2dB (r).

Case 3. Suppose x, = us, and xj, = uj,. This is analogous to Case 1, and p = 0.
Case 4. Suppose x. = u., and x, = lj,. This is analogous to Case 2, and p =
- 2 dBh(r).
Case 5. Suppose l < x, < u,, and x, = lj . This case can arise when the
incoming variable is a slack variable intialized between its bounds. Let -y =
f(min {x, -- 1,, u, - x.}), where f is the function that determines the basic compo-
nents of d (recall (2.27)). Then, dB,+l,() = 7r = dB,,) + p, so p = f - dBk().

Case 6. Suppose 1, < x, < u., and xj, = uj,. This is analogous to Case 5, so
p = -y - dh(r).

The parametric algorithm also uses a second objective vector d, albeit a con-
stant one. Although the generalization of Theorem 4 becomes unnecessary, bounded
variables affect the pivoting procedure. Recall that the algorithm sets dj = 11A.j 112
for j E N. in order to ensure optimality with respect to the parametric objective
function .N 0(0)= ZN9 + OdN0 > 0. Remember that the bounded variable form (7.5)
permits nonbasic variables to reside at their upper bounds. As a result, if a nonbasic
variable xj has positive reduced cost and equals its upper bound, use -dj instead
of di in the denominator of the ratio test (3.10).

This concludes the appendix. Since the author did not wish to burden the
reader with every equation in the bounded variable format, many equations influ-
enced by the change in form have been omitted. However, we have considered all
of the different ways bounded variables affect the mathematics of the thesis. The
reader can use the results of this chapter to derive the remaining relations.

.4.

80 '

I- le.

%

:I

-" "- ., " 1 • , • ,,% 3 I
-" 1 " " "" " , ' t. c .t -' " -,€ .¢r , .' .r .•." " ," ", u .e " ."r % : ; " .r " .: ." " "," "e ". -r " .." .'.€ .-,N. ,

N

REFERENCES

[1] Adler, I., Resende, M.G. and Veiga, G. (1986). An implementation of Karmax-
kar's algorithm for linear programming, Technical Report ORC 86-8, Opera-
tions Research Center, Department of Industrial Engineering and Operations
Research, University of California, Berkeley.

[2] Ashford, R. (1986). Devex pricing in the simplex algorithm, Warwick Papers
in Management No. 5, Institute for Management Research and Development, il
University of Warwick, Coventry. 1

[3] Blair, C. (1982). Some linear programs requiring many pivots, Faculty Working
Paper No. 867, College of Commerce and Business Administration, University
of Illinois at Champaign-Urbana.

[4] Chang, S.Y. and Murty, K.G. (1987). The steepest descent gravitational meth- NIP'.
od for linear programming, Technical Report #87-14, Department of Industrial
and Operations Engineering, the University of Michigan, Ann Arbor, Michigan.

[51 Cooper, L. and Kennington, J. (1979). Nonextreme point solution strategies 0
for linear programs, Naval Research Logistics Quarterly 26, pp. 447-462.

[6] Dantzig, G.B. (1963). Linear Programming and Extensions, Princeton Univer-
sity Press, Princeton, New Jersey.

[7] Dantzig, G.B. (1988). Making progress during a stall in the simplex algorithm,
Technical Report SOL 88-5, Systems Optimization Lab, Department of Oper-
ations Research, Stanford University, Stanford, California.

[8] Eiselt, H.A. and Sandblom, C.-L. (1985). External pivoting in the simplex
algorithm, Statistica Neerlandica 39, pp. 327-341.

[9] Eiselt, H.A., Sandblom, C.-L. and DeMarr, R. (1985). Computational experi-
ence with external pivoting, Mathematical Programming Society Committee 0
on Algorithms Newsletter No. 12, pp. 16-20.

[10] Eiselt, H.A. and Sandblom, C.-L. (1986). On estimating optimal bases for linear%
programs, Journal of Information and Optimization Sciences 7, pp. 29-39.

[11] kaikner, J.C. -nd Ryan, D.M. (1987). Aspects of bus crew scheduling using
a set partitioning model, Department of Theoretical and Applied Mechanics, 0
University of Auckland, Auckland, New Zealand."-

[12] Fathi, Y. and Murty, K.G. (1986). Computational behavior of a feasible di-
rection method for linear programming, IE Technical Report #86-11, North
Carolina State University, Raleigh, North Carolina.

[13] Gass, £ I. and Saaty, T.L. (1955). The computational algorithm for the para- .
metric objective function, Naval. Res. Logist. Quart. 2, pp. 39-45.

[14] Gill, P.E., Murray, W. and Wright, M.H. (1981). Practical Optimization, Aca-
demic Press, London.

[15] Gill, P.E., Murray, W., Saunders, M.A., Tomlin, J.A. and Wright, M.H. (1986).
On projected Newton barrier methods for linear programming and an equiva- 0
lence to Karmarkar's projective method, Mathematical Programming 36, pp.
183-209.

81

[16] Gill, P.E., Murray, W., Saunders, M.A. and Wright, M.H. (1987). Maintaininga
LU factors of a general sparse matrix, Linear Algebra and its Applications
88/89, pp. 239-270.

[17] Goldfarb, D. and Sit, W.Y. (1979). Worst case behavior of the steepest edge
simplex method, Discrete Appl. Math. 1, pp. 277-285.

[18] Harris, P.M.J. (1973). Pivot selection methods of the Devex LP code, Mathe-
matical Programming Study 4, pp. 30-57.

[19] Jeroslow, R.G. (1973). The simplex algorithm with the pivot rule of maximizing
criterion improvement, Discrete Mathematics 4, pp. 367-377.

[20] Kalan, J.E. (1976). Machine-inspired enhancements of the simplex algorithm,
Technical Report CS75001-R, Computer Science Department, Virginia Poly-
technical University, Blacksburg, Virginia.

[21] Kallio, M. and Porteus, E. (1978). A class of methiods for linear programming,

Mathematical Programming 14, pp. 161-169.
[22] Kallio, M. and Orchard-Hays, W. (1981). Experiments with the reduced gradi-

ent method for general and dynamic linear programming, in Large Scale Linear
Programming (G.B. Dantzig, M.A.H. Dempster and M. Kallio, eds.), pp. 631-
662, IIASA, Laxenburg, Austria.

[23] Karmarkar, N. (1984). A new polynomial-time algorithm for linear program-
ming, Proceedings of the 16th Annual ACM Symposium on the Theory of
Computing, pp. 302-311.

[24] Klee, V. (1965). A class of linear programming problems requiring a large
number of iterations, Numer. Math. 7, pp. 313-321.

[25] Klee, V. and Minty, G.J. (1972). How good is the simplex algorithm?, in Pro-
ceedings of the 3rd Symposium on Inequalities (Shish, 0., ed.), pp. 159-175,
Academic Press, New York.

[26] Lustig, I.J. (1985). A practical approach to Karmarkar's algorithm, Techni-
cal Report SOL 85-5, Systems Optimization Lab, Department of Operations
Research, Stanford University, Stanford, California.

[27] Lustig, I.J. (1987). Comparisons of composite simplex algorithms, Technical
Report SOL 87-8, Systems Optimization Lab, Department of Operations Re-
search, Stanford University, Stanford, California.

[28] Lustig, I.J. (1987). The equivalence of Dantzig's self-dual parametric algorithm
for linear programs to Lemke's algorithm for linear complementarity problems
apphed to linear programs, Technical Report SOL 87-4, Systems Optimiza-
tion Lab, Department of Operations Research, Stanford University, Stanford,
California.

[29] Lustig, I.J. (1987). An analysis of an available set of linear programming test
problems, Technical Report SOL 87-11, Systems Optimization Lab, Depart-
ment of Operations Research, Stanford University, Stanford, California.

(301 Megiddo, N. (1983). Linear-time algorithms for linear programming in R' and

related problems, Siam J. Computing 12, pp. 759-776.
[31] Murtagh, B.A. (1981). Advanced Linear Programming, McGraw-Hill, New

York.

82

F"

[32] Murtagh, B.A. and Saunders, M. A. (1978). Large-scale linearly constrained
optimization, Mathematical Programming 14, pp. 41-72.

[33] Murtagh, B.A. and Saunders, M.A. (1983). MINOS 5.0 User's Guide, Techni-
cal Report SOL 83-20, Systems Optimization Lab, Department of Operations
Research, Stanford University, Stanford, California.

[34] Murtagh, B.A. and Saunders, M.A. (1987). MINOS 5.1 User's Guide, Technical
Report SOL 83-20R, Systems Optimization Lab, Department of Operations
Research, Stanford University, Stanford, California.

[35] Murty, K.G. (1976). Linear and Combinatorial Programming, John Wiley and
Sons, New York.

[36] Murty, K.G. and Fathi, Y. (1984). A feasible direction method for linear pro-
gramming, Operations Research 3, pp. 121-127.

[37] Nazareth, L. (1985). Pricing criteria in the simplex method, Computational
Decision Support Systems, Berkeley, California.

[38] Perold, A.F. (1981). Exploiting degeneracy in the simplex method, in Large
Scale Linear Programming (G.B. Dantzig, M.A.H. Dempster and M. Kallio,
eds.), pp. 55-66, IIASA, Laxenburg, Austria.

[39] Perold, ,.F. (1981) A degeneracy exploiting LU factorization for the simplex
method, in Large Scale Linear Programming (G.B. Dantzig, M.A.H. Dempster
and M.J. Kallio, eds.), pp. 67-96, IIASA, Laxenburg, Austria.

[40] Pyle, L.D. (1987). Generalizations of the simplex algorithm, Department of
Compvter Science, Houston, Texas.

[41] Ravindran, A. (1973). A comparison of the primal simplex and complementary
pivot methods for linear programming, Naval Research Logistics Quarterly 20,
pp. 95-100.

[421 Renegar, J. (1986). A polynomial-time algorithm, based on Newton's method,
for linear programming, Mathematical Science Research Institute, Berkeley,
California.

[43] Sethi, A.P. and Thompson, G.L. (1984). The pivot and probe algorithm for
solving a linear program, Mathematical Programming 29, pp. 219-233.

[44] Shamir, R. (1987). The efficiency of the simplex method: a survey, Management
Science 33, pp. 301-334.

[45] Sherali, H.D., Soyster, A.L. and Baines, S.G. (1983). Nonadjacent extreme
point methods for solving linear programs, Naval Research Logistics Quarterly
30, pp. 145-161.

[46] Strang, G. (1976). Linear Algebra and its Applications, Academic Press, Lon-
don and New York.

[47] Todd, M. (1988). Karmarkar as Dantzig-Wolfe, Technical Report #782, College
of Engineering, Cornell University, Ithaca, New York.

[48] Todd, M. (1988). Private correspondence.
[49] Vanderbei, R.J., Meketon, M.S. and Freedman, B.A. (1986). A modification of

Karmarkar's linear programming algorithm, Algorithmica 1, pp. 395-408.
[50] Wolfe, P. (1962). The reduced gradient method, unpublished manuscript,

RAND Corporation.

83 • -.

I it.

[51] Wolfe, P. (1963). A technique for resolving degeneracy in linear programming,
J. Soc. Indust. Appl. Math. 11, pp. 2u5-211.

[52] Ye, Y. (1987). Eliminating columns in the simplex method for linear pro-
gramming, Department of Engineering-Economic Systems, Stanford University,
Stanford, California.

[53] Zadeh, N. (1980). What is the worst-case behavior of the simplex algorithm?,
Technical Report No. 27, Department of Operations Research, Stanford Uni-
versity, Stanford, California.

[54] Zikan, K. and Cottle, R.W. (1987). The box method for linear programming:
part I - basic theory, Technical Report SOL 87-6, Systems Optimization Lab,
Department of Operations Research, Stanford University, Stanford, California.

-8

* k4

UNCLASSIFIED
SECUMTV CLASSFICATION OF THIS PAGE tmm OW*,MW ______________

REPORT DOCUMENTAYMO PAGE RZAD 81TWM o

Technical Report SQL 88-15 I_____________
4. TITLE (And &XIM1140* TYPE OF REP@RT A PERpOO COVugCO

Dynamic Pricing Criteria in Linear Programmuiing Technical Report

6 . P a R FO R101 4 @ OR . IE P O R T Nu uA Eca%1-

7. AUTNOR~q) 0. CONTRACT ON GRANT HUNI1111(s)

Edward S. Klotz NOQ0l 4-85-K-0343

9. PERFORMING OWR5AHIZATION MAKE AND £00635 W.* PGANLE POET TASK

Department of Operations Research -SOL .lilZ
Stanford University
Stanford, CA 94305-4022 DT

IS. CONTROLLING OPPICE NAM AND RasoemA

Office of Naval Research -Dept. of the Navy July 1988
800 N. Quincy Street I&. Mumm or PAG"
Arlington, VA 22217 84 Pages

ISEURIT'Y CLASS (of We. osv)

UNCLASSIFIED
IS&. DELSI CATIONID@WNGRADING

16. 0gSTRIOUTION STATEMENT (00 NS. aM*VW

This document has been approved for public release and sale;
its distribution is unlimited.

17. DISTIISUTION STATEMEZNT (of d. abeie entered inMDIe""2. it ai11wet hen~iJ Ato..

I'l. SUPPLEENNTARY NOTELS

19. KEY WORDS (Comftwe " fewer" W.a of 000em, - ad ar 6Fsa week

Linear Programmiing, Simplex Method, Reduced-Gradient Method,
Pricing, Degeneracy.

210 AGSTRACT (Candau. en toers doi boaee r a g Ail p Weekl ainb

Plas see other side for Abstract ...

DO I 'jA*~ 1473 EDITION OF I NOV 65 IS OWSOLETE11

SECURITY CLASSIFICATION OF THIS PAGE (When Dat MRtw~

SICUINiTY CLAW ICATIO OF ThiS PAOIrMn D ABOS TRA

ABSTRACT

In recent years the interest in linear programming algorithms has increased
greatly due to the discovery of new interior-point methods. New results have also
prompted researchers to reconsider some previously discarded ideas in light of their
additional knowledge. This thesis begins with a study of some variants of the
reduced-gradient method applied to linear programs. Preliminary computational
tests revealed how sparsity and degeneracy, two characteristics present in most
practical problems, can severely inhibit such variants. The development of dynamic
pricing criteria to exclude certain columns from the search direction provides a com-
putationally efficient way to alleviate these difficulties. Application to the simplex
method yields a pivot rule designed to avoid degenerate pivots. Generalization of
the rule yields a cheap method to estimate the step lengths associated with potential
incoming nonbasic variables. The result is a set of pivot rules that appear partic-
ularly useful on highly degenerate and poorly scaled linear programs. Extensive
computational tests are presented.

%I

SECURITY CLAS FICATYO 1 OF
r . AG rWo. 1 . Enlev'.I %O

.,a A A -. ,*i , ~ 4 *~A.' '

'4'

r.

S

S

k

ILAA~~D
1*~

9

S

"N

ii ~'. .- ,.

UU

w
-

~/Tiw
w w U U 0I? ~

-N: I ~

-v--~-------.---

~

